Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 21(3): 167-178, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32005969

RESUMEN

R-loops are three-stranded structures that harbour an RNA-DNA hybrid and frequently form during transcription. R-loop misregulation is associated with DNA damage, transcription elongation defects, hyper-recombination and genome instability. In contrast to such 'unscheduled' R-loops, evidence is mounting that cells harness the presence of RNA-DNA hybrids in scheduled, 'regulatory' R-loops to promote DNA transactions, including transcription termination and other steps of gene regulation, telomere stability and DNA repair. R-loops formed by cellular RNAs can regulate histone post-translational modification and may be recognized by dedicated reader proteins. The two-faced nature of R-loops implies that their formation, location and timely removal must be tightly regulated. In this Perspective, we discuss the cellular processes that regulatory R-loops modulate, the regulation of R-loops and the potential differences that may exist between regulatory R-loops and unscheduled R-loops.


Asunto(s)
ADN/química , Inestabilidad Genómica/genética , Estructuras R-Loop/genética , Animales , ADN/genética , Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/genética , Replicación del ADN/genética , Replicación del ADN/fisiología , Regulación de la Expresión Génica/genética , Código de Histonas/genética , Humanos , Conformación de Ácido Nucleico , Estructuras R-Loop/fisiología , ARN/química , ARN/genética , Telómero/genética , Transcripción Genética/genética
2.
Cell ; 170(1): 72-85.e14, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666126

RESUMEN

Maintenance of a minimal telomere length is essential to prevent cellular senescence. When critically short telomeres arise in the absence of telomerase, they can be repaired by homology-directed repair (HDR) to prevent premature senescence onset. It is unclear why specifically the shortest telomeres are targeted for HDR. We demonstrate that the non-coding RNA TERRA accumulates as HDR-promoting RNA-DNA hybrids (R-loops) preferentially at very short telomeres. The increased level of TERRA and R-loops, exclusively at short telomeres, is due to a local defect in RNA degradation by the Rat1 and RNase H2 nucleases, respectively. Consequently, the coordination of TERRA degradation with telomere replication is altered at shortened telomeres. R-loop persistence at short telomeres contributes to activation of the DNA damage response (DDR) and promotes recruitment of the Rad51 recombinase. Thus, the telomere length-dependent regulation of TERRA and TERRA R-loops is a critical determinant of the rate of replicative senescence.


Asunto(s)
Ciclo Celular , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Senescencia Celular , Daño del ADN , Exorribonucleasas/metabolismo , Hibridación de Ácido Nucleico , Reparación del ADN por Recombinación , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/química , Proteínas de Unión a Telómeros/metabolismo
3.
EMBO J ; 41(4): e108290, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35028974

RESUMEN

Nucleotide metabolism fuels normal DNA replication and is also primarily targeted by the DNA replication checkpoint when replication stalls. To reveal a comprehensive interconnection between genome maintenance and metabolism, we analyzed the metabolomic changes upon replication stress in the budding yeast S. cerevisiae. We found that upon treatment of cells with hydroxyurea, glucose is rapidly diverted to the oxidative pentose phosphate pathway (PPP). This effect is mediated by the AMP-dependent kinase, SNF1, which phosphorylates the transcription factor Mig1, thereby relieving repression of the gene encoding the rate-limiting enzyme of the PPP. Surprisingly, NADPH produced by the PPP is required for efficient recruitment of replication protein A (RPA) to single-stranded DNA, providing the signal for the activation of the Mec1/ATR-Rad53/CHK1 checkpoint signaling kinase cascade. Thus, SNF1, best known as a central energy controller, determines a fast mode of replication checkpoint activation through a redox mechanism. These findings establish that SNF1 provides a hub with direct links to cellular metabolism, redox, and surveillance of DNA replication in eukaryotes.


Asunto(s)
Replicación del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Replicación del ADN/efectos de los fármacos , ADN de Cadena Simple/metabolismo , Glucosa/genética , Glucosa/metabolismo , Glucólisis/fisiología , Hidroxiurea , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , NADP/metabolismo , Vía de Pentosa Fosfato , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38521050

RESUMEN

Sequence-level data offers insights into biological processes through the interaction of two or more genomic features from the same or different molecular data types. Within motifs, this interaction is often explored via the co-occurrence of feature genomic tracks using fixed-segments or analytical tests that respectively require window size determination and risk of false positives from over-simplified models. Moreover, methods for robustly examining the co-localization of genomic features, and thereby understanding their spatial interaction, have been elusive. We present a new analytical method for examining feature interaction by introducing the notion of reciprocal co-occurrence, define statistics to estimate it and hypotheses to test for it. Our approach leverages conditional motif co-occurrence events between features to infer their co-localization. Using reverse conditional probabilities and introducing a novel simulation approach that retains motif properties (e.g. length, guanine-content), our method further accounts for potential confounders in testing. As a proof-of-concept, motif co-localization (MoCoLo) confirmed the co-occurrence of histone markers in a breast cancer cell line. As a novel analysis, MoCoLo identified significant co-localization of oxidative DNA damage within non-B DNA-forming regions that significantly differed between non-B DNA structures. Altogether, these findings demonstrate the potential utility of MoCoLo for testing spatial interactions between genomic features via their co-localization.


Asunto(s)
ADN , Genómica , Simulación por Computador
5.
PLoS Genet ; 18(4): e1010167, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35486666

RESUMEN

Ultraviolet light causes DNA lesions that are removed by nucleotide excision repair (NER). The efficiency of NER is conditional to transcription and chromatin structure. UV induced photoproducts are repaired faster in the gene transcribed strands than in the non-transcribed strands or in transcriptionally inactive regions of the genome. This specificity of NER is known as transcription-coupled repair (TCR). The discovery of pervasive non-coding RNA transcription (ncRNA) advocates for ubiquitous contribution of TCR to the repair of UV photoproducts, beyond the repair of active gene-transcribed strands. Chromatin rules transcription, and telomeres form a complex structure of proteins that silences nearby engineered ectopic genes. The essential protective function of telomeres also includes preventing unwanted repair of double-strand breaks. Thus, telomeres were thought to be transcriptionally inert, but more recently, ncRNA transcription was found to initiate in subtelomeric regions. On the other hand, induced DNA lesions like the UV photoproducts must be recognized and repaired also at the ends of chromosomes. In this study, repair of UV induced DNA lesions was analyzed in the subtelomeric regions of budding yeast. The T4-endonuclease V nicking-activity at cyclobutene pyrimidine dimer (CPD) sites was exploited to monitor CPD formation and repair. The presence of two photoproducts, CPDs and pyrimidine (6,4)-pyrimidones (6-4PPs), was verified by the effective and precise blockage of Taq DNA polymerase at these sites. The results indicate that UV photoproducts in silenced heterochromatin are slowly repaired, but that ncRNA transcription enhances NER throughout one subtelomeric element, called Y', and in distinct short segments of the second, more conserved element, called X. Therefore, ncRNA-transcription dependent TCR assists global genome repair to remove CPDs and 6-4PPs from subtelomeric DNA.


Asunto(s)
Saccharomyces cerevisiae , Rayos Ultravioleta , Cromatina , ADN , Daño del ADN/genética , Reparación del ADN/genética , Heterocromatina , Dímeros de Pirimidina/genética , ARN no Traducido/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telómero/genética , Telómero/metabolismo , Transcripción Genética
6.
EMBO J ; 39(3): e102309, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31833079

RESUMEN

The duplication of the eukaryotic genome is an intricate process that has to be tightly safe-guarded. One of the most frequently occurring errors during DNA synthesis is the mis-insertion of a ribonucleotide instead of a deoxyribonucleotide. Ribonucleotide excision repair (RER) is initiated by RNase H2 and results in error-free removal of such mis-incorporated ribonucleotides. If left unrepaired, DNA-embedded ribonucleotides result in a variety of alterations within chromosomal DNA, which ultimately lead to genome instability. Here, we review how genomic ribonucleotides lead to chromosomal aberrations and discuss how the tight regulation of RER timing may be important for preventing unwanted DNA damage. We describe the structural impact of unrepaired ribonucleotides on DNA and chromatin and comment on the potential consequences for cellular fitness. In the context of the molecular mechanisms associated with faulty RER, we have placed an emphasis on how and why increased levels of genomic ribonucleotides are associated with severe autoimmune syndromes, neuropathology, and cancer. In addition, we discuss therapeutic directions that could be followed for pathologies associated with defective removal of ribonucleotides from double-stranded DNA.


Asunto(s)
Cromatina/metabolismo , ADN/metabolismo , Ribonucleasa H/metabolismo , Animales , Reparación del ADN , Eucariontes , Aptitud Genética , Inestabilidad Genómica , Humanos
7.
PLoS Pathog ; 18(8): e1010726, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36044447

RESUMEN

Although combination antiretroviral therapy (ART) blocks HIV replication, it is not curative because infected CD4+ T cells that carry intact, infectious proviruses persist. Understanding the behavior of clones of infected T cells is important for understanding the stability of the reservoir; however, the stabilities of clones of infected T cells in persons on long-term ART are not well defined. We determined the relative stabilities of clones of infected and uninfected CD4+ T cells over time intervals of one to four years in three individuals who had been on ART for 9-19 years. The largest clones of uninfected T cells were larger than the largest clones of infected T cells. Clones of infected CD4+ T cells were more stable than clones of uninfected CD4+ T cells of a similar size. Individual clones of CD4+ T cells carrying intact, infectious proviruses can expand, contract, or remain stable over time.


Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos , Células Clonales , ADN Viral , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Humanos , Provirus/genética
8.
Nucleic Acids Res ; 50(22): 12829-12843, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36513120

RESUMEN

Cancer cells achieve immortality by employing either homology-directed repair (HDR) or the telomerase enzyme to maintain telomeres. ALT (alternative lengthening of telomeres) refers to the subset of cancer cells that employ HDR. Many ALT features are conserved from yeast to human cells, with the yeast equivalent being referred to as survivors. The non-coding RNA TERRA, and its ability to form RNA-DNA hybrids, has been implicated in ALT/survivor maintenance by promoting HDR. It is not understood which telomeres in ALT/survivors engage in HDR, nor is it clear which telomeres upregulate TERRA. Using yeast survivors as a model for ALT, we demonstrate that HDR only occurs at telomeres when they become critically short. Moreover, TERRA levels steadily increase as telomeres shorten and decrease again following HDR-mediated recombination. We observe that survivors undergo cycles of senescence, in a similar manner to non-survivors following telomerase loss, which we refer to as survivor associated senescence (SAS). Similar to 'normal' senescence, we report that RNA-DNA hybrids slow the rate of SAS, likely through the elongation of critically short telomeres, however decreasing the rate of telomere shortening may contribute to this effect. In summary, TERRA RNA-DNA hybrids regulate telomere dysfunction-induced senescence before and after survivor formation.


Asunto(s)
ARN Largo no Codificante , Saccharomyces cerevisiae , Telomerasa , Acortamiento del Telómero , Humanos , ARN Largo no Codificante/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo
9.
Genes Dev ; 30(6): 700-17, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26966248

RESUMEN

Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance.


Asunto(s)
Intercambio Genético/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homeostasis del Telómero/genética , Proteínas de Unión a Telómeros/metabolismo , ARN Helicasas DEAD-box/genética , Eliminación de Gen , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Proteínas de Unión a Telómeros/genética
10.
PLoS Pathog ; 17(4): e1009141, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33826675

RESUMEN

HIV persists during antiretroviral therapy (ART) as integrated proviruses in cells descended from a small fraction of the CD4+ T cells infected prior to the initiation of ART. To better understand what controls HIV persistence and the distribution of integration sites (IS), we compared about 15,000 and 54,000 IS from individuals pre-ART and on ART, respectively, with approximately 395,000 IS from PBMC infected in vitro. The distribution of IS in vivo is quite similar to the distribution in PBMC, but modified by selection against proviruses in expressed genes, by selection for proviruses integrated into one of 7 specific genes, and by clonal expansion. Clones in which a provirus integrated in an oncogene contributed to cell survival comprised only a small fraction of the clones persisting in on ART. Mechanisms that do not involve the provirus, or its location in the host genome, are more important in determining which clones expand and persist.


Asunto(s)
Antirretrovirales/uso terapéutico , Infecciones por VIH/virología , Leucocitos Mononucleares/virología , Oncogenes/genética , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , ADN Viral/genética , Humanos , Oncogenes/inmunología , Provirus/genética , Replicación Viral/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-37878467

RESUMEN

BACKGROUND: Robust physical mobility is the key to healthy independent aging. Although the association between socioeconomic status and health is well documented, it is unclear whether there is a relationship between mobility and income, because income data are not readily available. QUESTIONS/PURPOSES: (1) Do individuals with better mobility have higher incomes? (2) Does maintaining mobility over time allow individuals to keep working? (3) Is exercise associated with higher mobility over time? METHODS: We obtained longitudinal income and health data from the nationally representative Health and Retirement Study. Three cohorts were used. First, we studied the relationship between household income and mobility (on a 6-point index of walking impairment) in 19,430 adults who were assessed in 2016 (representing 93% of the 20,805-person total cohort). We measured the association of mobility and household income in a multivariate linear regression analysis of age, gender, health conditions, and education. We then identified a second group of 1094 individuals with unrestricted mobility in the year 2000 and compared differences in income and working rates between those who maintained mobility and those who lost mobility after 10 years. Finally, we identified a third group of 7063 individuals who were 60 to 80 years old in 2012, divided the group by how often they engaged in exercise, and observed differences in mobility after 4 years. RESULTS: After adjusting for covariates, a drop of one level of mobility was associated with a USD 3410 reduction in annual household income (95% CI USD 2890 to USD 3920; p < 0.001). After 10 years, individuals who maintained their mobility had incomes that were USD 6500 higher than that of individuals who were not working (95% CI USD 2300 to USD 10,300; p < 0.001) and were more likely to be working (40% versus 34.5%; p < 0.001). Exercising at least once per week was associated with better mobility 4 years later (mobility score 4.46 ± 0.08 versus 3.66 ± 0.08; p < 0.001). CONCLUSION: Better mobility was associated with more than USD 3000 in annual income. Regular exercise and other interventions that improve mobility may have meaningful returns on investment. CLINICAL RELEVANCE: Because greater mobility is strongly associated with higher income, orthopaedic interventions may be undervalued.

12.
PLoS Genet ; 16(12): e1008603, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370275

RESUMEN

Telomeres have the ability to adopt a lariat conformation and hence, engage in long and short distance intra-chromosome interactions. Budding yeast telomeres were proposed to fold back into subtelomeric regions, but a robust assay to quantitatively characterize this structure has been lacking. Therefore, it is not well understood how the interactions between telomeres and non-telomeric regions are established and regulated. We employ a telomere chromosome conformation capture (Telo-3C) approach to directly analyze telomere folding and its maintenance in S. cerevisiae. We identify the histone modifiers Sir2, Sin3 and Set2 as critical regulators for telomere folding, which suggests that a distinct telomeric chromatin environment is a major requirement for the folding of yeast telomeres. We demonstrate that telomeres are not folded when cells enter replicative senescence, which occurs independently of short telomere length. Indeed, Sir2, Sin3 and Set2 protein levels are decreased during senescence and their absence may thereby prevent telomere folding. Additionally, we show that the homologous recombination machinery, including the Rad51 and Rad52 proteins, as well as the checkpoint component Rad53 are essential for establishing the telomere fold-back structure. This study outlines a method to interrogate telomere-subtelomere interactions at a single unmodified yeast telomere. Using this method, we provide insights into how the spatial arrangement of the chromosome end structure is established and demonstrate that telomere folding is compromised throughout replicative senescence.


Asunto(s)
Replicación del ADN , Histona Desacetilasas/metabolismo , Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Telómero/genética , Histona Desacetilasas/genética , Metiltransferasas/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Telómero/química , Homeostasis del Telómero
13.
Genes Dev ; 29(21): 2287-97, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26545813

RESUMEN

The host chromatin-binding factor LEDGF/p75 interacts with HIV-1 integrase and directs integration to active transcription units. To understand how LEDGF/p75 recognizes transcription units, we sequenced 1 million HIV-1 integration sites isolated from cultured HEK293T cells. Analysis of integration sites showed that cancer genes were preferentially targeted, raising concerns about using lentivirus vectors for gene therapy. Additional analysis led to the discovery that introns and alternative splicing contributed significantly to integration site selection. These correlations were independent of transcription levels, size of transcription units, and length of the introns. Multivariate analysis with five parameters previously found to predict integration sites showed that intron density is the strongest predictor of integration density in transcription units. Analysis of previously published HIV-1 integration site data showed that integration density in transcription units in mouse embryonic fibroblasts also correlated strongly with intron number, and this correlation was absent in cells lacking LEDGF. Affinity purification showed that LEDGF/p75 is associated with a number of splicing factors, and RNA sequencing (RNA-seq) analysis of HEK293T cells lacking LEDGF/p75 or the LEDGF/p75 integrase-binding domain (IBD) showed that LEDGF/p75 contributes to splicing patterns in half of the transcription units that have alternative isoforms. Thus, LEDGF/p75 interacts with splicing factors, contributes to exon choice, and directs HIV-1 integration to transcription units that are highly spliced.


Asunto(s)
VIH-1/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Integración Viral/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Intrones/genética , Unión Proteica , Estructura Terciaria de Proteína , Empalme del ARN
14.
Bioinformatics ; 37(18): 3023-3025, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33729437

RESUMEN

SUMMARY: MicroRNAs (miRNAs) are master regulators of gene expression in cancers. Their sequence variants or isoforms (isomiRs) are highly abundant and possess unique functions. Given their short sequence length and high heterogeneity, mapping isomiRs can be challenging; without adequate depth and data aggregation, low frequency events are often disregarded. To address these challenges, we present the Tumor IsomiR Encyclopedia (TIE): a dynamic database of isomiRs from over 10 000 adult and pediatric tumor samples in The Cancer Genome Atlas (TCGA) and The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) projects. A key novelty of TIE is its ability to annotate heterogeneous isomiR sequences and aggregate the variants obtained across all datasets. Results can be browsed online or downloaded as spreadsheets. Here, we show analysis of isomiRs of miR-21 and miR-30a to demonstrate the utility of TIE. AVAILABILITY AND IMPLEMENTATION: TIE search engine and data are freely available to use at https://isomir.ccr.cancer.gov/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Niño , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Motor de Búsqueda
15.
Bioinformatics ; 37(16): 2467-2469, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-33289511

RESUMEN

SUMMARY: The Annotation, Visualization and Impact Analysis (AVIA) is a web application combining multiple features to annotate and visualize genomic variant data. Users can investigate functional significance of their genetic alterations across samples, genes and pathways. Version 3.0 of AVIA offers filtering options through interactive charts and by linking disease relevant data sources. Newly incorporated services include gene, variant and sample level reporting, literature and functional correlations among impacted genes, comparative analysis across samples and against data sources such as TCGA and ClinVar, and cohort building. Sample and data management is now feasible through the application, which allows greater flexibility with sharing, reannotating and organizing data. Most importantly, AVIA's utility stems from its convenience for allowing users to upload and explore results without any a priori knowledge or the need to install, update and maintain software or databases. Together, these enhancements strengthen AVIA as a comprehensive, user-driven variant analysis portal. AVAILABILITYAND IMPLEMENTATION: AVIA is accessible online at https://avia-abcc.ncifcrf.gov.


Asunto(s)
Bases de Datos Genéticas , Variación Genética , Manejo de Datos , Genoma , Genómica , Humanos , Internet , Programas Informáticos
16.
EMBO Rep ; 21(3): e49087, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32026548

RESUMEN

Telomere shortening rates must be regulated to prevent premature replicative senescence. TERRA R-loops become stabilized at critically short telomeres to promote their elongation through homology-directed repair (HDR), thereby counteracting senescence onset. Using a non-bias proteomic approach to detect telomere binding factors, we identified Npl3, an RNA-binding protein previously implicated in multiple RNA biogenesis processes. Using chromatin immunoprecipitation and RNA immunoprecipitation, we demonstrate that Npl3 interacts with TERRA and telomeres. Furthermore, we show that Npl3 associates with telomeres in an R-loop-dependent manner, as changes in R-loop levels, for example, at short telomeres, modulate the recruitment of Npl3 to chromosome ends. Through a series of genetic and biochemical approaches, we reveal that Npl3 binds to TERRA and stabilizes R-loops at short telomeres, which in turn promotes HDR and prevents premature replicative senescence onset. This may have implications for diseases associated with excessive telomere shortening.


Asunto(s)
Estructuras R-Loop , Telómero , Senescencia Celular/genética , Proteómica , Telómero/genética , Acortamiento del Telómero
17.
Nucleic Acids Res ; 48(1): 264-277, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31647103

RESUMEN

The accumulation of mutations is frequently associated with alterations in gene function leading to the onset of diseases, including cancer. Aiming to find novel genes that contribute to the stability of the genome, we screened the Saccharomyces cerevisiae deletion collection for increased mutator phenotypes. Among the identified genes, we discovered MET7, which encodes folylpolyglutamate synthetase (FPGS), an enzyme that facilitates several folate-dependent reactions including the synthesis of purines, thymidylate (dTMP) and DNA methylation. Here, we found that Met7-deficient strains show elevated mutation rates, but also increased levels of endogenous DNA damage resulting in gross chromosomal rearrangements (GCRs). Quantification of deoxyribonucleotide (dNTP) pools in cell extracts from met7Δ mutant revealed reductions in dTTP and dGTP that cause a constitutively active DNA damage checkpoint. In addition, we found that the absence of Met7 leads to dUTP accumulation, at levels that allowed its detection in yeast extracts for the first time. Consequently, a high dUTP/dTTP ratio promotes uracil incorporation into DNA, followed by futile repair cycles that compromise both mitochondrial and nuclear DNA integrity. In summary, this work highlights the importance of folate polyglutamylation in the maintenance of nucleotide homeostasis and genome stability.


Asunto(s)
Nucleótidos de Desoxiuracil/metabolismo , Ácido Fólico/metabolismo , Genoma Fúngico , Péptido Sintasas/genética , Saccharomyces cerevisiae/genética , Nucleótidos de Timina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Daño del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Inestabilidad Genómica , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Péptido Sintasas/deficiencia , Saccharomyces cerevisiae/metabolismo , Uracilo/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(51): 25891-25899, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31776247

RESUMEN

Understanding HIV-1 persistence despite antiretroviral therapy (ART) is of paramount importance. Both single-genome sequencing (SGS) and integration site analysis (ISA) provide useful information regarding the structure of persistent HIV DNA populations; however, until recently, there was no way to link integration sites to their cognate proviral sequences. Here, we used multiple-displacement amplification (MDA) of cellular DNA diluted to a proviral endpoint to obtain full-length proviral sequences and their corresponding sites of integration. We applied this method to lymph node and peripheral blood mononuclear cells from 5 ART-treated donors to determine whether groups of identical subgenomic sequences in the 2 compartments are the result of clonal expansion of infected cells or a viral genetic bottleneck. We found that identical proviral sequences can result from both cellular expansion and viral genetic bottlenecks occurring prior to ART initiation and following ART failure. We identified an expanded T cell clone carrying an intact provirus that matched a variant previously detected by viral outgrowth assays and expanded clones with wild-type and drug-resistant defective proviruses. We also found 2 clones from 1 donor that carried identical proviruses except for nonoverlapping deletions, from which we could infer the sequence of the intact parental virus. Thus, MDA-SGS can be used for "viral reconstruction" to better understand intrapatient HIV-1 evolution and to determine the clonality and structure of proviruses within expanded clones, including those with drug-resistant mutations. Importantly, we demonstrate that identical sequences observed by standard SGS are not always sufficient to establish proviral clonality.


Asunto(s)
VIH-1/genética , Integración Viral/genética , Replicación Viral/genética , Antirretrovirales/uso terapéutico , Secuencia de Bases , Línea Celular , ADN Viral/genética , Farmacorresistencia Viral , Infecciones por VIH/virología , Humanos , Leucocitos Mononucleares/virología , Ganglios Linfáticos/virología , Mutación , Provirus/genética , Integración Viral/fisiología
19.
Tob Control ; 30(e1): e27-e32, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33093189

RESUMEN

BACKGROUND: The effectiveness of tax increases relies heavily on the tobacco industry passing on such increases to smokers (also referred to as 'pass-through'). Previous research has found heterogeneous levels of tax pass-through across the market segments of tobacco products available to smokers. This study uses retail sales data to assess the extent to which recent tax changes have been passed on to smokers and whether this varies across the price distribution. METHODS: We use panel data quantile regression analysis on Nielsen commercial data of tobacco price and sales in the UK from January 2013 to March 2019 combined with official UK tax rates and inflation to calculate the rate of tax pass-through for factory made (FM) cigarettes and roll your own (RYO) tobacco. RESULTS: Following increases in the specific tax payable on tobacco, we find evidence of overshifting across the price distribution for both FM and RYO. The rate of the overshift in tax increased the more expensive the products were. This was consistent for FM and RYO. Additionally, our findings suggest that the introduction of standardised packaging was not followed by changes in how the tobacco industry responded to tax increases. CONCLUSIONS: Following the repeated introduction of increases in specific tobacco tax as well as standardised packaging, we show that the tobacco industry applies techniques to keep the cheapest tobacco cheaper relative to the more expensive products when passing on tax increases to smokers.


Asunto(s)
Industria del Tabaco , Productos de Tabaco , Comercio , Humanos , Impuestos , Nicotiana , Reino Unido
20.
Chem Rev ; 118(8): 4365-4403, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29600857

RESUMEN

Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.


Asunto(s)
Inestabilidad Genómica , ARN no Traducido/genética , Roturas del ADN de Doble Cadena , Daño del ADN , Regulación de la Expresión Génica , Humanos , Interferencia de ARN , Proteínas de Unión al ARN/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA