Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Genes Dev ; 30(6): 700-17, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26966248

RESUMEN

Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance.


Asunto(s)
Intercambio Genético/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homeostasis del Telómero/genética , Proteínas de Unión a Telómeros/metabolismo , ARN Helicasas DEAD-box/genética , Eliminación de Gen , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Proteínas de Unión a Telómeros/genética
2.
PLoS Genet ; 13(12): e1007136, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29281624

RESUMEN

RNA-DNA hybrids are naturally occurring obstacles that must be overcome by the DNA replication machinery. In the absence of RNase H enzymes, RNA-DNA hybrids accumulate, resulting in replication stress, DNA damage and compromised genomic integrity. We demonstrate that Mph1, the yeast homolog of Fanconi anemia protein M (FANCM), is required for cell viability in the absence of RNase H enzymes. The integrity of the Mph1 helicase domain is crucial to prevent the accumulation of RNA-DNA hybrids and RNA-DNA hybrid-dependent DNA damage, as determined by Rad52 foci. Mph1 forms foci when RNA-DNA hybrids accumulate, e.g. in RNase H or THO-complex mutants and at short telomeres. Mph1, however is a double-edged sword, whose action at hybrids must be regulated by the Smc5/6 complex. This is underlined by the observation that simultaneous inactivation of RNase H2 and Smc5/6 results in Mph1-dependent synthetic lethality, which is likely due to an accumulation of toxic recombination intermediates. The data presented here support a model, where Mph1's helicase activity plays a crucial role in responding to persistent RNA-DNA hybrids.


Asunto(s)
Proteínas de Ciclo Celular/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Daño del ADN , ARN de Hongos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Reparación del ADN , Replicación del ADN/genética , Replicación del ADN/fisiología , ARN Helicasas/metabolismo , ARN de Hongos/metabolismo , Ribonucleasa H/genética , Saccharomyces cerevisiae/genética
3.
Differentiation ; 100: 37-45, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29494831

RESUMEN

Cancer cells activate telomere maintenance mechanisms (TMMs) to bypass replicative senescence and achieve immortality by either upregulating telomerase or promoting homology-directed repair (HDR) at chromosome ends to maintain telomere length, the latter being referred to as ALT (Alternative Lengthening of Telomeres). In yeast telomerase mutants, the HDR-based repair of telomeres leads to the generation of 'survivors' that escape senescence and divide indefinitely. So far, yeast has proven to provide an accurate model to study the generation and maintenance of telomeres via HDR. Recently, it has been established that up-regulation of the lncRNA, TERRA (telomeric repeat-containing RNA), is a novel hallmark of ALT cells. Moreover, RNA-DNA hybrids are thought to trigger HDR at telomeres in ALT cells to maintain telomere length and function. Here we show that, also in established yeast type II survivors, TERRA levels are increased in an analogous manner to human ALT cells. The elevated TERRA levels are independent of yeast-specific subtelomeric structures, i.e. the presence or absence of Y' repetitive elements. Furthermore, we show that RNase H1 overexpression, which degrades the RNA moiety in RNA-DNA hybrids, impairs the growth of yeast survivors. We suggest that even in terms of TERRA regulation, yeast survivors serve as an accurate model that recapitulates many key features of human ALT cells.


Asunto(s)
ARN Largo no Codificante/genética , Ribonucleasa H/genética , Proteínas de Saccharomyces cerevisiae/genética , Homeostasis del Telómero , ARN Largo no Codificante/química , ARN Largo no Codificante/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Ribonucleasa H/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/química , Telómero/genética
4.
EMBO J ; 29(4): 795-805, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20010692

RESUMEN

FANCM binds and remodels replication fork structures in vitro. We report that in vivo, FANCM controls DNA chain elongation in an ATPase-dependent manner. In the presence of replication inhibitors that do not damage DNA, FANCM counteracts fork movement, possibly by remodelling fork structures. Conversely, through damaged DNA, FANCM promotes replication and recovers stalled forks. Hence, the impact of FANCM on fork progression depends on the underlying hindrance. We further report that signalling through the checkpoint effector kinase Chk1 prevents FANCM from degradation by the proteasome after exposure to DNA damage. FANCM also acts in a feedback loop to stabilize Chk1. We propose that FANCM is a ringmaster in the response to replication stress by physically altering replication fork structures and by providing a tight link to S-phase checkpoint signalling.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Adenosina Trifosfatasas/metabolismo , Secuencia de Bases , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , ADN/biosíntesis , ADN/genética , Daño del ADN , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , Reparación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/antagonistas & inhibidores , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño/genética , Fase S , Transducción de Señal
5.
Mol Cell Biol ; 27(12): 4526-40, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17403899

RESUMEN

The COP9/signalosome (CSN) is an evolutionarily conserved macromolecular complex that regulates the cullin-RING ligase (CRL) class of E3 ubiquitin ligases, primarily by removing the ubiquitin-like protein Nedd8 from the cullin subunit. In the Caenorhabditis elegans embryo, the CSN controls the degradation of the microtubule-severing protein MEI-1 through CUL-3 deneddylation. However, the molecular mechanisms of CSN function and its subunit composition remain to be elucidated. Here, using a proteomic approach, we have characterized the CSN and CUL-3 complexes from C. elegans embryos. We show that the CSN physically interacts with the CUL-3-based CRL and regulates its activity by counteracting the autocatalytic instability of the substrate-specific adaptor MEL-26. Importantly, we identified the uncharacterized protein K08F11.3/CIF-1 (for CSN-eukaryotic initiation factor 3 [eIF3]) as a stoichiometric and functionally important subunit of the CSN complex. CIF-1 appears to be the only ortholog of Csn7 encoded by the C. elegans genome, but it also exhibits extensive sequence similarity to eIF3m family members, which are required for the initiation of protein translation. Indeed, CIF-1 binds eIF-3.F and inactivation of cif-1 impairs translation in vivo. Taken together, our results indicate that CIF-1 is a shared subunit of the CSN and eIF3 complexes and may therefore link protein translation and degradation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Factor 3 de Iniciación Eucariótica/metabolismo , Regulación del Desarrollo de la Expresión Génica , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Complejo del Señalosoma COP9 , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Embrión no Mamífero , Factor 3 de Iniciación Eucariótica/química , Inmunohistoquímica , Modelos Biológicos , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Péptido Hidrolasas/química , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Proteómica/métodos , Interferencia de ARN , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
6.
Cell Rep ; 29(9): 2890-2900.e5, 2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31775053

RESUMEN

RNA-DNA hybrids are tightly regulated to ensure genome integrity. The RNase H enzymes RNase H1 and H2 contribute to chromosomal stability through the removal of RNA-DNA hybrids. Loss of RNase H2 function is implicated in human diseases of the nervous system and cancer. To better understand RNA-DNA hybrid dynamics, we focused on elucidating the regulation of the RNase H enzymes themselves. Using yeast as a model system, we demonstrate that RNase H1 and H2 are controlled in different manners. RNase H2 has strict cell cycle requirements, in that it has an essential function in G2/M for both R-loop processing and ribonucleotide excision repair. RNase H1, however, can function independently of the cell cycle to remove R-loops and appears to become activated in response to high R-loop loads. These results provide us with a more complete understanding of how and when RNA-DNA hybrids are acted upon by the RNase H enzymes.


Asunto(s)
ADN/metabolismo , ARN/metabolismo , Ribonucleasa H/metabolismo , Humanos
7.
Curr Biol ; 15(18): 1605-15, 2005 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-16169482

RESUMEN

BACKGROUND: The initiation of a cleavage furrow is essential to separate cells during cytokinesis, but little is known about the mechanisms controlling this actin-driven process. Previous studies in C. elegans embryos revealed that inactivation of the CUL-3-based E3 ligase activator rfl-1 results in an aberrant microtubule network, ectopic furrowing during pronuclear migration, and defects during cytokinesis. RESULTS: Here, we show that MEL-26, a substrate-specific adaptor of the CUL-3-based E3 ligase, is required for efficient cell separation and cleavage furrow ingression during the C. elegans early mitotic divisions. Loss of MEL-26 function leads to delayed onset and slow ingression of cytokinesis furrows that frequently regress. Conversely, increased levels of MEL-26 in cul-3(RNAi) and rfl-1 mutant embryos cause a hypercontractile cortex, with several simultaneously ingressing furrows during pronuclear migration. MEL-26 accumulates at cleavage furrows and binds the actin-interacting protein POD-1. Importantly, POD-1 is not a substrate of the MEL-26/CUL-3 ligase but is required to localize MEL-26 to the cortex. CONCLUSIONS: Our results suggest that MEL-26 not only acts as a substrate-specific adaptor within the MEL-26/CUL-3 complex, but also promotes cytokinesis by a CUL-3- and microtubule-independent mechanism.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Citocinesis/fisiología , Animales , Caenorhabditis elegans/fisiología , Proteínas Cullin/genética , Escherichia coli , Vectores Genéticos , Glutatión Transferasa , Immunoblotting , Inmunohistoquímica , Proteínas de Microfilamentos/metabolismo , Interferencia de ARN , Saccharomyces cerevisiae
8.
Nat Struct Mol Biol ; 20(10): 1199-205, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24013207

RESUMEN

Although telomeres are heterochromatic, they are transcribed into noncoding telomeric repeat-containing RNA (TERRA). Here we show that RNA-DNA hybrids form at telomeres and are removed by RNase H enzymes in the budding yeast, Saccharomyces cerevisiae. In recombination-competent telomerase mutants, telomeric RNA-DNA hybrids promote recombination-mediated elongation events that delay the onset of cellular senescence. Reduction of TERRA and telomeric RNA-DNA-hybrid levels diminishes rates of recombination-mediated telomere elongation in cis. Overexpression of RNase H decreases telomere recombination rates and accelerates senescence in recombination-competent but not recombination-deficient cells. In contrast, in the absence of both telomerase and homologous recombination, accumulation of telomeric RNA-DNA hybrids leads to telomere loss and accelerated rates of cellular senescence. Therefore, the regulation of TERRA transcription and telomeric RNA-DNA-hybrid formation are important determinants of both telomere-length dynamics and proliferative potential after the inactivation of telomerase.


Asunto(s)
Envejecimiento/genética , ADN de Hongos/química , Hibridación de Ácido Nucleico , ARN de Hongos/química , Telómero , Recombinación Genética , Ribonucleasa H/metabolismo , Saccharomyces cerevisiae/enzimología
9.
PLoS One ; 7(7): e42028, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848695

RESUMEN

Double strand breaks (DSBs) can be repaired via either Non-Homologous End Joining (NHEJ) or Homology directed Repair (HR). Telomeres, which resemble DSBs, are refractory to repair events in order to prevent chromosome end fusions and genomic instability. In some rare instances telomeres engage in Break-Induced Replication (BIR), a type of HR, in order to maintain telomere length in the absence of the enzyme telomerase. Here we have investigated how the yeast helicase, Mph1, affects DNA repair at both DSBs and telomeres. We have found that overexpressed Mph1 strongly inhibits BIR at internal DSBs however allows it to proceed at telomeres. Furthermore, while overexpressed Mph1 potently inhibits NHEJ at telomeres it has no effect on NHEJ at DSBs within the chromosome. At telomeres Mph1 is able to promote telomere uncapping and the accumulation of ssDNA, which results in premature senescence in the absence of telomerase. We propose that Mph1 is able to direct repair towards HR (thereby inhibiting NHEJ) at telomeres by remodeling them into a nuclease-sensitive structure, which promotes the accumulation of a recombinogenic ssDNA intermediate. We thus put forward that Mph1 is a double-edge sword at the telomere, it prevents NHEJ, but promotes senescence in cells with dysfunctional telomeres by increasing the levels of ssDNA.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Telómero/genética , ARN Helicasas DEAD-box/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Replicación del ADN/genética , ADN de Hongos/biosíntesis , ADN de Hongos/genética , ADN de Cadena Simple/biosíntesis , ADN de Cadena Simple/genética , Regulación Fúngica de la Expresión Génica , Mutación , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética
10.
Front Oncol ; 2: 180, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226680

RESUMEN

The DNA at the ends of linear chromosomes (the telomere) folds back onto itself and forms an intramolecular lariat-like structure. Although the telomere loop has been implicated in the protection of chromosome ends from nuclease-mediated resection and unscheduled DNA repair activities, it potentially poses an obstacle to the DNA replication machinery during S-phase. Therefore, the coordinated regulation of telomere loop formation, maintenance, and resolution is required in order to establish a balance between protecting the chromosome ends and promoting their duplication prior to cell division. Until recently, the only factor known to influence telomere looping in human cells was TRF2, a component of the shelterin complex. Recent work in yeast and mouse cells has uncovered additional regulatory factors that affect the loop structure at telomeres. In the following "perspective" we outline what is known about telomere looping and highlight the latest results regarding the regulation of this chromosome end structure. We speculate about how the manipulation of the telomere loop may have therapeutic implications in terms of diseases associated with telomere dysfunction and uncontrolled proliferation.

11.
J Cell Sci ; 120(Pt 18): 3179-87, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17878235

RESUMEN

Members of the AAA-ATPase (ATPases associated with diverse cellular activities) family use the energy from ATP hydrolysis to disrupt protein complexes involved in many cellular processes. Here, we report that FIGL-1 (Fidgetin-like 1), the single Caenorhabditis elegans homolog of mammalian fidgetin and fidgetin-like 1 AAA-ATPases, controls progression through mitosis in the germ line and the early embryo. Loss of figl-1 function leads to the accumulation of mitotic nuclei in the proliferative zone of the germ line, resulting in sterility owing to depletion of germ cells. Like the AAA-ATPase MEI-1 (also known as katanin), FIGL-1 interacts with microtubules and with MEL-26, a specificity factor of CUL-3-based E3 ligases involved in targeting proteins for ubiquitin-dependent degradation by the 26S proteasome. In the germ line, FIGL-1 is enriched in nuclei of mitotic cells, but it disappears at the transition into meiosis. Conversely, MEL-26 expression is low in nuclei of the mitotic zone and induced during meiosis. FIGL-1 accumulates in the germ line and spreads to the meiotic zone after inactivation of mel-26 or cul-3 in vivo. We conclude that degradation of FIGL-1 by the CUL-3MEL-26 E3 ligase spatially restricts FIGL-1 function to mitotic cells, where it is required for correct progression through mitosis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Cullin/metabolismo , Células Germinativas/metabolismo , Mitosis/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/genética , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Cullin/genética , Células Germinativas/citología , Infertilidad/genética , Infertilidad/metabolismo , Katanina , Meiosis/fisiología , Microtúbulos/genética , Microtúbulos/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA