RESUMEN
Colloidal crystals and their two-dimensional (2D) monolayers, which have been commonly applied in nanosphere lithography, have the potential to revolutionize many engineering disciplines; however, current production techniques are hampered by a restricted preparation area, laborious procedures, and the need for advanced equipment. We propose a self-assembly-driven, simple, and low-cost method to prepare 2D colloidal nanosphere monolayers with excellent repeatability across wide regions. The self-assembly capability of colloidal polystyrene (PS) nanospheres at the air/water interface was utilized to transfer the assembled monolayers onto a substrate. This innovative method combines the advantages of methods that permit deposition at the air/water interface, such as Langmuir and drop coating, in order to deliver defect-free, simple-to-install, and simple-to-apply deposition across vast regions. Using field emission scanning electron microscopy and atomic force microscopy, the resultant coatings were characterized. The size of the nanospheres was reduced using an oxygen plasma etch process in an inductively coupled plasma reactive ion etching system, and the reflectance properties of the substrates for various nanosphere sizes were investigated. By evaporation of a thin gold capping layer on the templates, their optical properties were compared using surface-enhanced Raman scattering spectroscopy. This work has the potential to expand the use of nanosphere lithography by offering a simple and reproducible method that eliminates the need for complicated experimental setups and reduces the amount of material required for monolayer coating, thus lowering the cost.
RESUMEN
Extensive research has been conducted on the application of nanoparticles in the treatment of cancer and infectious diseases. Due to their exceptional characteristics and flexible structure, they are classified as highly efficient drug delivery systems, ensuring both safety and targeted delivery. Nevertheless, nanoparticles still encounter obstacles, such as biological instability, absence of selectivity, recognition as unfamiliar elements, and quick elimination, which restrict their remedial capacity. To surmount these drawbacks, biomimetic nanotechnology has been developed that utilizes T cell and natural killer (NK) cell membrane-encased nanoparticles as sophisticated methods of administering drugs. These nanoparticles can extend the duration of drug circulation and avoid immune system clearance. During the membrane extraction and coating procedure, the surface proteins of immunological cells are transferred to the biomimetic nanoparticles. Such proteins present on the surface of cells confer several benefits to nanoparticles, including prolonged circulation, enhanced targeting, controlled release, specific cellular contact, and reduced in vivo toxicity. This review focuses on biomimetic nanosystems that are derived from the membranes of T cells and NK cells and their comprehensive extraction procedure, manufacture, and applications in cancer treatment and viral infections. Furthermore, potential applications, prospects, and existing challenges in their medical implementation are highlighted.
Asunto(s)
Membrana Celular , Células Asesinas Naturales , Nanopartículas , Neoplasias , Linfocitos T , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Membrana Celular/química , Virosis/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Tamaño de la Partícula , Ensayo de Materiales , Antivirales/química , Antivirales/farmacología , Antivirales/uso terapéuticoRESUMEN
Doxorubicin (DOX) is a highly effective anticancer drug with a narrow therapeutic window; thus, sensitive and timely detection of DOX is crucial. Using electrodeposition of silver nanoparticles (AgNPs) and electropolymerization of alginate (Alg) layers on the surface of a glassy carbon electrode, a novel electrochemical probe was constructed (GCE). The fabricated AgNPs/poly-Alg-modified GCE probe was utilized for the quantification of DOX in unprocessed human plasma samples. For the electrodeposition of AgNPs and electropolymerization of alginate (Alg) layers on the surface of GCE, cyclic voltammetry (CV) was used in the potential ranges of -2.0 to 2.0 V and -0.6 to 0.2 V, respectively. The electrochemical activity of DOX exhibited two oxidation processes at the optimum pH value of 5.5 on the surface of the modified GCE. The DPV spectra of poly(Alg)/AgNPs modified GCE probe toward consecutive concentrations of DOX in plasma samples demonstrated wide dynamic ranges of 15 ng/mL-0.1 µg/mL and 0.1-5.0 µg/mL, with a low limit of quantification (LLOQ) of 15 ng/mL. The validation results indicated that the fabricated electrochemical probe might serve as a highly sensitive and selective assay for the quantification of DOX in patient samples. As an outstanding feature, the developed probe could detect DOX in unprocessed plasma samples and cell lysates without the requirement for pretreatment.