Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Macromol Rapid Commun ; 37(13): 1027-32, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27168131

RESUMEN

Thiol-click reactions lead to polymeric materials with a wide range of interesting mechanical, electrical, and optical properties. However, this reaction mechanism typically results in bulk materials with a low glass transition temperature (Tg ) due to rotational flexibility around the thioether linkages found in networks such as thiol-ene, thiol-epoxy, and thiol-acrylate systems. This report explores the thiol-maleimide reaction utilized for the first time as a solvent-free reaction system to synthesize high-Tg thermosetting networks. Through thermomechanical characterization via dynamic mechanical analysis, the homogeneity and Tg s of thiol-maleimide networks are compared to similarly structured thiol-ene and thiol-epoxy networks. While preliminary data show more heterogeneous networks for thiol-maleimide systems, bulk materials exhibit Tg s 80 °C higher than other thiol-click systems explored herein. Finally, hollow tubes are synthesized using each thiol-click reaction mechanism and employed in low- and high-temperature environments, demonstrating the ability to withstand a compressive radial 100 N deformation at 100 °C wherein other thiol-click systems fail mechanically.


Asunto(s)
Química Clic , Maleimidas/química , Polímeros/síntesis química , Compuestos de Sulfhidrilo/química , Temperatura de Transición , Vidrio , Estructura Molecular , Polímeros/química
2.
ACS Appl Mater Interfaces ; 16(8): 10795-10804, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38377544

RESUMEN

Metal-organic frameworks (MOFs) have captured the imagination of researchers for their highly tunable properties and many potential applications, including as catalysts for a variety of transformations. Even though MOFs possess significant potential, the challenges associated with processing of these crystalline powders into usable form factors while retaining their functional properties limit their end use applications. Herein, we introduce a new approach to construct MOF-polymer composites via 3D photoprinting to overcome these limitations. We designed photoresin composite formulations that use polymerization-induced phase separation to cause the MOF catalysts to migrate to the surface of the printed material, where they are accessible to substrates such as chemical warfare agents. Using our approach, MOF-polymer composites can be fabricated into nearly any shape or architecture while retaining both the excellent catalytic activity at 10 wt % loading of the MOF components and the flexible, elastomeric mechanical properties of a polymer.

3.
Addit Manuf ; 842024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38567361

RESUMEN

The working curve informs resin properties and print parameters for stereolithography, digital light processing, and other photopolymer additive manufacturing (PAM) technologies. First demonstrated in 1992, the working curve measurement of cure depth vs radiant exposure of light is now a foundational measurement in the field of PAM. Despite its widespread use in industry and academia, there is no formal method or procedure for performing the working curve measurement, raising questions about the utility of reported working curve parameters. Here, an interlaboratory study (ILS) is described in which 24 individual laboratories performed a working curve measurement on an aliquot from a single batch of PAM resin. The ILS reveals that there is enormous scatter in the working curve data and the key fit parameters derived from it. The measured depth of light penetration Dp varied by as much as 7x between participants, while the critical radiant exposure for gelation Ec varied by as much as 70x. This significant scatter is attributed to a lack of common procedure, variation in light engines, epistemic uncertainties from the Jacobs equation, and the use of measurement tools with insufficient precision. The ILS findings highlight an urgent need for procedural standardization and better hardware characterization in this rapidly growing field.

4.
Biomed Microdevices ; 15(6): 925-39, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23852172

RESUMEN

Flexible bioelectronics encompass a new generation of sensing devices, in which controlled interactions with tissue enhance understanding of biological processes in vivo. However, the fabrication of such thin film electronics with photolithographic processes remains a challenge for many biocompatible polymers. Recently, two shape memory polymer (SMP) systems, based on acrylate and thiol-ene/acrylate networks, were designed as substrates for softening neural interfaces with glass transitions above body temperature (37 °C) such that the materials are stiff for insertion into soft tissue and soften through low moisture absorption in physiological conditions. These two substrates, acrylate and thiol-ene/acrylate SMPs, are compared to polyethylene naphthalate, polycarbonate, polyimide, and polydimethylsiloxane, which have been widely used in flexible electronics research and industry. These six substrates are compared via dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and swelling studies. The integrity of gold and chromium/gold thin films on SMP substrates are evaluated with optical profilometry and electrical measurements as a function of processing temperature above, below and through the glass transition temperature. The effects of crosslink density, adhesion and cure stress are shown to play a critical role in the stability of these thin film materials, and a guide for the future design of responsive polymeric materials suitable for neural interfaces is proposed. Finally, neural interfaces fabricated on thiol-ene/acrylate substrates demonstrate long-term fidelity through both in vitro impedance spectroscopy and the recording of driven local field potentials for 8 weeks in the auditory cortex of laboratory rats.


Asunto(s)
Equipos y Suministros Eléctricos , Polímeros , Absorción , Acrilatos/química , Animales , Corteza Auditiva , Interfaces Cerebro-Computador , Cromo/química , Electrodos , Oro/química , Fenómenos Mecánicos , Ratas , Compuestos de Sulfhidrilo/química , Temperatura
5.
ACS Appl Mater Interfaces ; 7(51): 28673-81, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26650346

RESUMEN

Hydrolytically stable, tunable modulus polymer networks are demonstrated to survive harsh alkaline environments and offer promise for use in long-term implantable bioelectronic medicines known as electroceuticals. Today's polymer networks (such as polyimides or polysiloxanes) succeed in providing either stiff or soft substrates for bioelectronics devices; however, the capability to significantly tune the modulus of such materials is lacking. Within the space of materials with easily modified elastic moduli, thiol-ene copolymers are a subset of materials that offer a promising solution to build next generation flexible bioelectronics but have typically been susceptible to hydrolytic degradation chronically. In this inquiry, we demonstrate a materials space capable of tuning the substrate modulus and explore the mechanical behavior of such networks. Furthermore, we fabricate an array of microelectrodes that can withstand accelerated aging environments shown to destroy conventional flexible bioelectronics.


Asunto(s)
Materiales Biocompatibles/química , Polímeros/química , Siloxanos/química , Compuestos de Sulfhidrilo/química , Módulo de Elasticidad , Electrónica/instrumentación , Hidrólisis , Cinética , Microelectrodos
6.
ACS Macro Lett ; 2(1): 35-39, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35581822

RESUMEN

Transparent, film-forming fluorinated arylene vinylene ether (FAVE) polymers with enchained triarylamine (TAA) moieties were prepared and characterized. Control over fluoro-olefin content within the backbone, as a function of base, was confirmed and postpolymerization dehydrofluorination was shown to increase fluoroolefin content from 5 to 31 mol %. Thermal cross-linking was found to occur approximately 100 °C lower than in traditional FAVE polymers (ca. 160 °C). Electrochemical analysis demonstrated the enchained TAA retained its established electrochemical character. The latent reactivity of the TAA was explored via electrophilic aromatic substitution and formylation reactions toward precise functionalization for specific electro-optic applications and others.

7.
Mol Biol Cell ; 23(18): 3566-81, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22875985

RESUMEN

Proteasome inhibition is used as a treatment strategy for multiple types of cancers. Although proteasome inhibition can induce apoptotic cell death in actively proliferating cells, it is less effective in quiescent cells. In this study, we used primary human fibroblasts as a model system to explore the link between the proliferative state of a cell and proteasome inhibition-mediated cell death. We found that proliferating and quiescent fibroblasts have strikingly different responses to MG132, a proteasome inhibitor; proliferating cells rapidly apoptosed, whereas quiescent cells maintained viability. Moreover, MG132 treatment of proliferating fibroblasts led to increased superoxide anion levels, juxtanuclear accumulation of ubiquitin- and p62/SQSTM1-positive protein aggregates, and apoptotic cell death, whereas MG132-treated quiescent cells displayed fewer juxtanuclear protein aggregates, less apoptosis, and higher levels of mitochondrial superoxide dismutase. In both cell states, reducing reactive oxygen species with N-acetylcysteine lessened protein aggregation and decreased apoptosis, suggesting that protein aggregation promotes apoptosis. In contrast, increasing cellular superoxide levels with 2-methoxyestradiol treatment or inhibition of autophagy/lysosomal pathways with bafilomycin A1 sensitized serum-starved quiescent cells to MG132-induced apoptosis. Thus, antioxidant defenses and the autophagy/lysosomal pathway protect serum-starved quiescent fibroblasts from proteasome inhibition-induced cytotoxicity.


Asunto(s)
Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Leupeptinas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , 2-Metoxiestradiol , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Estradiol/análogos & derivados , Estradiol/farmacología , Fibroblastos/citología , Citometría de Flujo , Prepucio/citología , Humanos , Immunoblotting , Macrólidos/farmacología , Masculino , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína Sequestosoma-1 , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Ubiquitina/genética , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA