Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Genes Chromosomes Cancer ; 62(11): 672-677, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37303296

RESUMEN

Germline RUNX1 mutations lead to familial platelet disorder with associated myeloid malignancy (FPDMM), characterized by thrombocytopenia, abnormal bleeding, and an elevated risk of developing myelodysplastic neoplasia (MDS) and acute myeloid leukemia (AML) at young age. However, it is not known why or how germline carriers of RUNX1 mutations have a particular propensity to develop myeloid hematologic malignancies, but the acquisition and composition of somatic mutations are believed to initiate and determine disease progression. We present a novel family pedigree that shares a common germline RUNX1R204* variant and exhibits a spectrum of somatic mutations and related myeloid malignancies (MM). RUNX1 mutations are associated with inferior clinical outcome; however, the proband of this family developed MDS with ring sideroblasts (MDS-RS), classified as a low-risk MDS subgroup. His relatively indolent clinical course is likely due to a specific somatic mutation in the SF3B1 gene. While the three main RUNX1 isoforms have been ascribed various roles in normal hematopoiesis, they are now being increasingly recognized as involved in myeloid disease. We investigated the RUNX1 transcript isoform patterns in the proband and his sister, who carries the same germline RUNX1R204* variant, and has FPDMM but no MM. We demonstrate a RUNX1a increase in MDS-RS, as previously reported in MM. Interestingly, we identify a striking unbalance of RUNX1b and -c in FPDMM. In conclusion, this report reinforces the relevance of somatic variants on the clinical phenotypic heterogeneity in families with germline RUNX1 deficiency and investigates a potential new role for RUNX1 isoform disequilibrium as a mechanism for development of MM.


Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación , Isoformas de Proteínas/genética
2.
Nat Methods ; 11(8): 841-6, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24997862

RESUMEN

The spatial organization of membrane-bound ligands is thought to regulate receptor-mediated signaling. However, direct regulation of receptor function by nanoscale distribution of ligands has not yet been demonstrated, to our knowledge. We developed rationally designed DNA origami nanostructures modified with ligands at well-defined positions. Using these 'nanocalipers' to present ephrin ligands, we showed that the nanoscale spacing of ephrin-A5 directs the levels of EphA2 receptor activation in human breast cancer cells. Furthermore, we found that the nanoscale distribution of ephrin-A5 regulates the invasive properties of breast cancer cells. Our ligand nanocaliper approach has the potential to provide insight into the roles of ligand nanoscale spatial distribution in membrane receptor-mediated signaling.


Asunto(s)
Nanotecnología , Receptores de Superficie Celular/metabolismo , Endocitosis , Ligandos
3.
Respiration ; 90(6): 481-92, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26613253

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a devastating disorder. Despite enormous efforts in clinical research, effective treatment options are lacking, and mortality rates remain unacceptably high. OBJECTIVES: A male patient with severe ARDS showed no clinical improvement with conventional therapies. Hence, an emergent experimental intervention was performed. METHODS: We performed intratracheal administration of autologous peripheral blood-derived mononuclear cells (PBMCs) and erythropoietin (EPO). RESULTS: We found that after 2 days of initial PBMC/EPO application, lung function improved and extracorporeal membrane oxygenation (ECMO) support was reduced. Bronchoscopy and serum inflammatory markers revealed reduced inflammation. Additionally, serum concentration of miR-449a, b, c and miR-34a, a transient upregulation of E-cadherin and associated chromatin marks in PBMCs indicated airway epithelial differentiation. Extracellular vesicles from PBMCs demonstrated anti-inflammatory capacity in a TNF-α-mediated nuclear factor-x03BA;B in vitro assay. Despite improving respiratory function, the patient died of multisystem organ failure on day 38 of ECMO treatment. CONCLUSIONS: This case report provides initial encouraging evidence to use locally instilled PBMC/EPO for treatment of severe refractory ARDS. The observed clinical improvement may partially be due to the anti-inflammatory effects of PBMC/EPO to promote tissue regeneration. Further studies are needed for more in-depth understanding of the underlying mechanisms of in vivo regeneration.


Asunto(s)
Leucocitos Mononucleares/trasplante , Síndrome de Dificultad Respiratoria/terapia , Cadherinas/sangre , Citocinas/sangre , Regulación hacia Abajo , Eritropoyetina/administración & dosificación , Oxigenación por Membrana Extracorpórea , Resultado Fatal , Humanos , Masculino , MicroARNs/sangre , Insuficiencia Multiorgánica/etiología , Factores de Transcripción de la Familia Snail , Factores de Transcripción/sangre , Trasplante Autólogo , Regulación hacia Arriba , Adulto Joven
4.
Cancer Res ; 84(2): 211-225, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-37921711

RESUMEN

Myelodysplastic syndromes with ring sideroblasts (MDS-RS) commonly develop from hematopoietic stem cells (HSC) bearing mutations in the splicing factor SF3B1 (SF3B1mt). Direct studies into MDS-RS pathobiology have been limited by a lack of model systems that fully recapitulate erythroid biology and RS development and the inability to isolate viable human RS. Here, we combined successful direct RS isolation from patient samples, high-throughput multiomics analysis of cells encompassing the SF3B1mt stem-erythroid continuum, and functional assays to investigate the impact of SF3B1mt on erythropoiesis and RS accumulation. The isolated RS differentiated, egressed into the blood, escaped traditional nonsense-mediated decay (NMD) mechanisms, and leveraged stress-survival pathways that hinder wild-type hematopoiesis through pathogenic GDF15 overexpression. Importantly, RS constituted a contaminant of magnetically enriched CD34+ cells, skewing bulk transcriptomic data. Mis-splicing in SF3B1mt cells was intensified by erythroid differentiation through accelerated RNA splicing and decreased NMD activity, and SF3B1mt led to truncations in several MDS-implicated genes. Finally, RNA mis-splicing induced an uncoupling of RNA and protein expression, leading to critical abnormalities in proapoptotic p53 pathway genes. Overall, this characterization of erythropoiesis in SF3B1mt RS provides a resource for studying MDS-RS and uncovers insights into the unexpectedly active biology of the "dead-end" RS. SIGNIFICANCE: Ring sideroblast isolation combined with state-of-the-art multiomics identifies survival mechanisms underlying SF3B1-mutant erythropoiesis and establishes an active role for erythroid differentiation and ring sideroblasts themselves in SF3B1-mutant myelodysplastic syndrome pathogenesis.


Asunto(s)
Síndromes Mielodisplásicos , Fosfoproteínas , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Empalme del ARN/genética , Mutación , Factores de Transcripción/metabolismo , ARN/metabolismo
5.
EJHaem ; 4(1): 115-124, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36819185

RESUMEN

With modern treatment most children with acute lymphoblastic leukemia (ALL) survive without relapse. However, for children who relapse the prognosis is still poor, especially in children with T-cell phenotype (T-ALL) and remains the major cause of death. The exact mechanism of relapse is currently not known. While contribution of RNA processing alteration has been linked to other hematological malignancies, its contribution in pediatric T-ALL may provide new insights. Almost all human genes express more than one alternative splice isoform. Thus, gene modulation producing a diverse repertoire of the transcriptome and proteome have become a significant molecular marker of cancer and a potential therapeutic vulnerability. To study this, we performed RNA-sequencing analysis on patient-derived samples followed by splice isoform-specific PCR. We uncovered a distinct RNA splice isoform expression pattern characteristic for relapse samples compared to the leukemia samples from the time of diagnosis. We also identified deregulated splicing and apoptosis pathways specific for relapse T-ALL. Moreover, patients with T-ALL displayed pro-survival splice isoform switching favoring pro-survival isoforms compared to normal healthy stem cells. Cumulatively, pro-survival isoform switching and DFFB isoform regulation of SOX2 and MYCN may play a role in T-ALL proliferation and survival, thus serving as a potential therapeutic option.

6.
Lancet ; 378(9808): 1997-2004, 2011 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-22119609

RESUMEN

BACKGROUND: Tracheal tumours can be surgically resected but most are an inoperable size at the time of diagnosis; therefore, new therapeutic options are needed. We report the clinical transplantation of the tracheobronchial airway with a stem-cell-seeded bioartificial nanocomposite. METHODS: A 36-year-old male patient, previously treated with debulking surgery and radiation therapy, presented with recurrent primary cancer of the distal trachea and main bronchi. After complete tumour resection, the airway was replaced with a tailored bioartificial nanocomposite previously seeded with autologous bone-marrow mononuclear cells via a bioreactor for 36 h. Postoperative granulocyte colony-stimulating factor filgrastim (10 µg/kg) and epoetin beta (40,000 UI) were given over 14 days. We undertook flow cytometry, scanning electron microscopy, confocal microscopy epigenetics, multiplex, miRNA, and gene expression analyses. FINDINGS: We noted an extracellular matrix-like coating and proliferating cells including a CD105+ subpopulation in the scaffold after the reseeding and bioreactor process. There were no major complications, and the patient was asymptomatic and tumour free 5 months after transplantation. The bioartificial nanocomposite has patent anastomoses, lined with a vascularised neomucosa, and was partly covered by nearly healthy epithelium. Postoperatively, we detected a mobilisation of peripheral cells displaying increased mesenchymal stromal cell phenotype, and upregulation of epoetin receptors, antiapoptotic genes, and miR-34 and miR-449 biomarkers. These findings, together with increased levels of regenerative-associated plasma factors, strongly suggest stem-cell homing and cell-mediated wound repair, extracellular matrix remodelling, and neovascularisation of the graft. INTERPRETATION: Tailor-made bioartificial scaffolds can be used to replace complex airway defects. The bioreactor reseeding process and pharmacological-induced site-specific and graft-specific regeneration and tissue protection are key factors for successful clinical outcome. FUNDING: European Commission, Knut and Alice Wallenberg Foundation, Swedish Research Council, StratRegen, Vinnova Foundation, Radiumhemmet, Clinigene EU Network of Excellence, Swedish Cancer Society, Centre for Biosciences (The Live Cell imaging Unit), and UCL Business.


Asunto(s)
Neoplasias de los Bronquios/cirugía , Leucocitos Mononucleares/trasplante , Ingeniería de Tejidos/métodos , Andamios del Tejido , Neoplasias de la Tráquea/cirugía , Adulto , Reactores Biológicos , Prótesis Vascular , Trasplante de Médula Ósea , Broncoscopía , Carcinoma Mucoepidermoide/cirugía , Proliferación Celular , Epoetina alfa , Eritropoyetina/uso terapéutico , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , MicroARNs/metabolismo , Nanocompuestos/química , Recurrencia Local de Neoplasia/cirugía , Neovascularización Fisiológica , Tereftalatos Polietilenos , Proteínas Recombinantes/uso terapéutico , Regeneración , Trasplante Autólogo
7.
Angew Chem Int Ed Engl ; 50(52): 12529-33, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22057546

RESUMEN

Let it grow: The conjugated polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was synthesized with heparin as the counterion to form a cell culture substrate. The surface of PEDOT:heparin in the neutral state associated biologically active growth factors. Electrochemical in situ oxidation of PEDOT during live cell culture decreased the bioavailability of the growth factor and created an exact onset of neural stem cell differentiation.


Asunto(s)
Células Madre Embrionarias/citología , Factor 2 de Crecimiento de Fibroblastos/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Diferenciación Celular , Proliferación Celular , Electroquímica , Células Madre Embrionarias/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Heparina/química , Polímeros/química
8.
Dev Cell ; 52(4): 446-460.e5, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32032546

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs), first specified from hemogenic endothelium (HE) in the ventral dorsal aorta (VDA), support lifelong hematopoiesis. Their de novo production promises significant therapeutic value; however, current in vitro approaches cannot efficiently generate multipotent long-lived HSPCs. Presuming this reflects a lack of extrinsic cues normally impacting the VDA, we devised a human dorsal aorta-on-a-chip platform that identified Yes-activated protein (YAP) as a cyclic stretch-induced regulator of HSPC formation. In the zebrafish VDA, inducible Yap overexpression significantly increased runx1 expression in vivo and the number of CD41+ HSPCs downstream of HE specification. Endogenous Yap activation by lats1/2 knockdown or Rho-GTPase stimulation mimicked Yap overexpression and induced HSPCs in embryos lacking blood flow. Notably, in static human induced pluripotent stem cell (iPSC)-derived HE culture, compound-mediated YAP activation enhanced RUNX1 levels and hematopoietic colony-forming potential. Together, our findings reveal a potent impact of hemodynamic Rho-YAP mechanotransduction on HE fate, relevant to de novo human HSPC production.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Endotelio Vascular/citología , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes Inducidas/citología , Mecanotransducción Celular , Factores de Transcripción/metabolismo , Animales , Aorta/citología , Aorta/embriología , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Endotelio Vascular/metabolismo , Células Madre Hematopoyéticas/fisiología , Hemodinámica , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Factores de Transcripción/genética , Pez Cebra , Proteínas de Unión al GTP rho/metabolismo
9.
Blood Adv ; 4(19): 4679-4692, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33002135

RESUMEN

Fanconi anemia (FA) is a disorder of DNA repair that manifests as bone marrow (BM) failure. The lack of accurate murine models of FA has refocused efforts toward differentiation of patient-derived induced pluripotent stem cells (IPSCs) to hematopoietic progenitor cells (HPCs). However, an intact FA DNA repair pathway is required for efficient IPSC derivation, hindering these efforts. To overcome this barrier, we used inducible complementation of FANCA-deficient IPSCs, which permitted robust maintenance of IPSCs. Modulation of FANCA during directed differentiation to HPCs enabled the production of FANCA-deficient human HPCs that recapitulated FA genotoxicity and hematopoietic phenotypes relative to isogenic FANCA-expressing HPCs. FANCA-deficient human HPCs underwent accelerated terminal differentiation driven by activation of p53/p21. We identified growth arrest specific 6 (GAS6) as a novel target of activated p53 in FANCA-deficient HPCs and modulate GAS6 signaling to rescue hematopoiesis in FANCA-deficient cells. This study validates our strategy to derive a sustainable, highly faithful human model of FA, uncovers a mechanism of HPC exhaustion in FA, and advances toward future cell therapy in FA.


Asunto(s)
Anemia de Fanconi , Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular , Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Humanos , Ratones , Proteína p53 Supresora de Tumor/genética
11.
Nat Commun ; 9(1): 892, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29497036

RESUMEN

A better understanding of the cell-fate transitions that occur in complex cellular ecosystems in normal development and disease could inform cell engineering efforts and lead to improved therapies. However, a major challenge is to simultaneously identify new cell states, and their transitions, to elucidate the gene expression dynamics governing cell-type diversification. Here, we present CellRouter, a multifaceted single-cell analysis platform that identifies complex cell-state transition trajectories by using flow networks to explore the subpopulation structure of multi-dimensional, single-cell omics data. We demonstrate its versatility by applying CellRouter to single-cell RNA sequencing data sets to reconstruct cell-state transition trajectories during hematopoietic stem and progenitor cell (HSPC) differentiation to the erythroid, myeloid and lymphoid lineages, as well as during re-specification of cell identity by cellular reprogramming of monocytes and B-cells to HSPCs. CellRouter opens previously undescribed paths for in-depth characterization of complex cellular ecosystems and establishment of enhanced cell engineering approaches.


Asunto(s)
Células Madre Hematopoyéticas/citología , Análisis de la Célula Individual/métodos , Diferenciación Celular , Linaje de la Célula , Expresión Génica , Humanos , Análisis de Secuencia de ARN , Análisis de la Célula Individual/instrumentación
12.
Mol Metab ; 7: 12-22, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29157948

RESUMEN

OBJECTIVE: We examined whether skeletal muscle overexpression of PGC-1α1 or PGC-1α4 affected myokine secretion and neuromuscular junction (NMJ) formation. METHODS: A microfluidic device was used to model endocrine signaling and NMJ formation between primary mouse myoblast-derived myotubes and embryonic stem cell-derived motor neurons. Differences in hydrostatic pressure allowed for fluidic isolation of either cell type or unidirectional signaling in the fluid phase. Myotubes were transduced to overexpress PGC-1α1 or PGC-1α4, and myokine secretion was quantified using a proximity extension assay. Morphological and functional changes in NMJs were measured by fluorescent microscopy and by monitoring muscle contraction upon motor neuron stimulation. RESULTS: Skeletal muscle transduction with PGC-1α1, but not PGC-1α4, increased NMJ formation and size. PGC-1α1 increased muscle secretion of neurturin, which was sufficient and necessary for the effects of muscle PGC-1α1 on NMJ formation. CONCLUSIONS: Our findings indicate that neurturin is a mediator of PGC-1α1-dependent retrograde signaling from muscle to motor neurons.


Asunto(s)
Neuronas Motoras/metabolismo , Neurogénesis , Unión Neuromuscular/metabolismo , Neurturina/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transmisión Sináptica , Animales , Células Cultivadas , Ratones , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Unión Neuromuscular/citología , Unión Neuromuscular/fisiología
13.
Cell Rep ; 8(3): 665-70, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25088415

RESUMEN

Bone morphogenetic proteins (BMPs) secreted by the dorsal neural tube and overlying ectoderm are key signals for the specification of the roof plate and dorsal interneuron populations. However, the signals that confer nonneurogenic character to the roof plate region are largely unknown. We report that the roof plate region shows elevated oxygen levels compared to neurogenic regions of the neural tube. These high oxygen levels are required for the expression of the antineuronal transcription factor Hes1 in the roof plate region. The transcriptional corepressor CtBP is a critical mediator of the oxygen-sensing response. High oxygen promotes a decrease in the CtBP occupancy of the promoter of Hes1. Furthermore, under conditions of high oxygen and BMP, CtBP associates with HES1 and represses neurogenesis. We propose that CtBP integrates signals originating from microenvironmental levels of oxygen and BMP to confer nonneurogenic character to the roof plate region.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas del Ojo/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Oxígeno/metabolismo , Nicho de Células Madre , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Portadoras/genética , Hipoxia de la Célula , Células Cultivadas , Embrión de Pollo , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/citología , Tubo Neural/citología , Tubo Neural/metabolismo , Regiones Promotoras Genéticas , Ratas , Factor de Transcripción HES-1 , Factores de Transcripción/genética
14.
Biomaterials ; 35(6): 1907-13, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24321707

RESUMEN

Aortic valve degeneration and dysfunction is one of the leading causes for morbidity and mortality. The conventional heart-valve prostheses have significant limitations with either life-long anticoagulation therapeutic associated bleeding complications (mechanical valves) or limited durability (biological valves). Tissue engineered valve replacement recently showed encouraging results, but the unpredictable outcome of tissue degeneration is likely associated to the extensive tissue processing methods. We believe that optimized decellularization procedures may provide aortic valve/root grafts improved durability. We present an improved/innovative decellularization approach using a detergent-enzymatic perfusion method, which is both quicker and has less exposure of matrix degenerating detergents, compared to previous protocols. The obtained graft was characterized for its architecture, extracellular matrix proteins, mechanical and immunological properties. We further analyzed the engineered aortic root for biocompatibility by cell adhesion and viability in vitro and heterotopic implantation in vivo. The developed decellularization protocol was substantially reduced in processing time whilst maintaining tissue integrity. Furthermore, the decellularized aortic root remained bioactive without eliciting any adverse immunological reaction. Cell adhesion and viability demonstrated the scaffold's biocompatibility. Our optimized decellularization protocol may be useful to develop the next generation of clinical valve prosthesis with a focus on improved mechanical properties and durability.


Asunto(s)
Válvula Aórtica/citología , Ingeniería de Tejidos/métodos , Animales , Adhesión Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Detergentes , Inmunohistoquímica , Células Madre Mesenquimatosas/citología
15.
PLoS One ; 8(8): e72409, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936540

RESUMEN

The cell cycle progression in mouse embryonic stem cells (mESCs) is controlled by ion fluxes that alter cell volume [1]. This suggests that ion fluxes might control dynamic changes in morphology over the cell cycle, such as rounding up of the cell at mitosis. However, specific channels regulating such dynamic changes and the possible interactions with actomyosin complex have not been clearly identified. Following RNAseq transcriptome analysis of cell cycle sorted mESCs, we found that expression of the K(+) ion channel Erg1 peaked in G1 cell cycle phase, which was confirmed by immunostaining. Inhibition of Erg channel activity caused loss of G1 phase cells via non-apoptotic cell death. Cells first lost the ability of membrane blebbing, a typical feature of cultured embryonic stem cells. Continued Erg inhibition further increased cell volume and the cell eventually ruptured. In addition, atomic force measurements on live cells revealed a decreased cortical stiffness after treatment, suggesting alterations in actomyosin organization. When the intracellular osmotic pressure was experimentally decreased by hypertonic solution or block of K(+) ion import via the Na, K-ATPase, cell viability was restored and cells acquired normal volume and blebbing activity. Our results suggest that Erg channels have a critical function in K(+) ion homeostasis of mESCs over the cell cycle, and that cell death following Erg inhibition is a consequence of the inability to regulate cell volume.


Asunto(s)
Ciclo Celular/fisiología , Tamaño de la Célula , Células Madre Embrionarias/fisiología , Canales de Potasio Éter-A-Go-Go/metabolismo , Animales , Apoptosis , Western Blotting , Células Madre Embrionarias/citología , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/genética , Citometría de Flujo , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía de Fuerza Atómica , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Imagen de Lapso de Tiempo
16.
Biomaterials ; 33(17): 4319-26, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22440048

RESUMEN

We investigated whether decellularized pig tracheas could regenerate in vivo, without being recellularized before transplantation, using the own body as bioreactor. Decellularized pig tracheal scaffolds were intraoperative conditioned with mononuclear cells and growth and differentiation factors. During the postoperative period, the in situ regeneration was boosted by administering bioactive molecules to promote peripheral mobilization and differentiation of stem/progenitor cells and ultimately the regenerative process. Results revealed, after 2 weeks, a nearly normal trachea, with respiratory epithelium and a double-banded cartilage but without any mechanical differences compared to the native tissue. The growth factor administration resulted in a mobilization of progenitor and stem cells into the peripheral circulation and in an up-regulation of anti-apoptotic genes. Isolated stem/progenitor cells could be differentiated in vitro into several cell types, proving their multipotency. We provide evidence that the own body can be used as bioreactor to promote in vivo tissue engineering replacement. Moreover, we demonstrated the beneficial effect of additional pharmaceutical intervention for an improved engraftment of the transplant.


Asunto(s)
Ingeniería de Tejidos/métodos , Tráquea/fisiología , Animales , Fenómenos Biomecánicos , Separación Celular , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Citometría de Flujo , Regulación de la Expresión Génica , Humanos , Inflamación/patología , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sus scrofa , Tráquea/patología
17.
Biomaterials ; 33(32): 8094-103, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22901964

RESUMEN

In 2011, the first in-man successful transplantation of a tissue engineered trachea-bronchial graft, using a synthetic POSS-PCU nanocomposite construct seeded with autologous stem cells, was performed. To further improve this technology, we investigated the feasibility of using polymers with a three dimensional structure more closely mimicking the morphology and size scale of native extracellular matrix (ECM) fibers. We therefore investigated the in vitro biocompatibility of electrospun polyethylene terephthalate (PET) and polyurethane (PU) scaffolds, and determined the effects on cell attachment by conditioning the fibers with adhesion proteins. Rat mesenchymal stromal cells (MSCs) were seeded on either PET or PU fiber-layered culture plates coated with laminin, collagen I, fibronectin, poly-D-lysine or gelatin. Cell density, proliferation, viability, morphology and mRNA expression were evaluated. MSC cultures on PET and PU resulted in similar cell densities and amounts of proliferating cells, with retained MSC phenotype compared to data obtained from tissue culture plate cultures. Coating the scaffolds with adhesion proteins did not increase cell density or cell proliferation. Our data suggest that both PET and PU mats, matching the dimensions of ECM fibers, are biomimetic scaffolds and, because of their high surface area-to-volume provided by the electrospinning procedure, makes them per se suitable for cell attachment and proliferation without any additional coating.


Asunto(s)
Materiales Biocompatibles Revestidos/metabolismo , Células Madre Mesenquimatosas/citología , Tereftalatos Polietilenos/metabolismo , Poliuretanos/metabolismo , Andamios del Tejido/química , Animales , Adhesión Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Tereftalatos Polietilenos/química , Poliuretanos/química , ARN Mensajero/genética , Ratas , Ratas Endogámicas Lew , Ingeniería de Tejidos/métodos
18.
PLoS One ; 6(4): e18624, 2011 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-21494605

RESUMEN

Stem cell function is regulated by intrinsic as well as microenvironmental factors, including chemical and mechanical signals. Conducting polymer-based cell culture substrates provide a powerful tool to control both chemical and physical stimuli sensed by stem cells. Here we show that polypyrrole (PPy), a commonly used conducting polymer, can be tailored to modulate survival and maintenance of rat fetal neural stem cells (NSCs). NSCs cultured on PPy substrates containing different counter ions, dodecylbenzenesulfonate (DBS), tosylate (TsO), perchlorate (ClO(4)) and chloride (Cl), showed a distinct correlation between PPy counter ion and cell viability. Specifically, NSC viability was high on PPy(DBS) but low on PPy containing TsO, ClO(4) and Cl. On PPy(DBS), NSC proliferation and differentiation was comparable to standard NSC culture on tissue culture polystyrene. Electrical reduction of PPy(DBS) created a switch for neural stem cell viability, with widespread cell death upon polymer reduction. Coating the PPy(DBS) films with a gel layer composed of a basement membrane matrix efficiently prevented loss of cell viability upon polymer reduction. Here we have defined conditions for the biocompatibility of PPy substrates with NSC culture, critical for the development of devices based on conducting polymers interfacing with NSCs.


Asunto(s)
Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Polímeros/farmacología , Pirroles/farmacología , Animales , Membrana Basal/efectos de los fármacos , Membrana Basal/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Conductividad Eléctrica , Feto/citología , Iones , Polímeros/química , Pirroles/química , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA