RESUMEN
The rapid spread of the protozoan Haplosporidium pinnae is having a strong negative effect on Pinna nobilis populations. A case study on a residual population in Lake Faro (Sicily, Central Mediterranean), whose long-term monitoring has revealed a dramatic decline following the 2018-2020 mass mortality event, is presented. In the framework of such monitoring, we performed tissue sampling on nine living P. nobilis, detecting the pathogen in seven of them. In contrast, other pathogens associated with P. nobilis disease in other areas, i.e., Mycobacterium spp. and Vibrio mediterranei, were not recorded. The surviving individuals (approximately twenty) showed that brackish areas only weakly mitigate the effects of H. pinnae disease and might not be resolutive. Nevertheless, the results show that Lake Faro may constitute one of the last Mediterranean P. nobilis sanctuaries.
Asunto(s)
Bivalvos , Haplosporidios , Mycobacterium , Humanos , Animales , Lagos , Bivalvos/microbiologíaRESUMEN
Five psychrotolerant Alcanivorax spp. strains were isolated from Antarctic coastal waters. Strains were screened for molecular and physiological properties and analyzed regarding their growth capacity. Partial 16S rDNA, alk-B1, and P450 gene sequencing was performed. Biolog EcoPlates and the API 20E test were used to evaluate metabolic and biochemical profiles. Bacterial growth in sodium acetate was determined at 4, 15, 20, and 25 °C to evaluate the optimal temperature. Furthermore, the ability of each strain to grow in a hydrocarbon mixture at 4 and 25 °C was assayed. Biosurfactant production tests (drop-collapse and oil spreading) and emulsification activity tests (E24) were also performed. Concerning results of partial gene sequencing (16S rDNA, alk-B1, and P450), a high similarity of the isolates with the same genes isolated from other Alcanivorax spp. strains was observed. The metabolic profiles obtained by Biolog assays showed no significant differences in the isolates compared to the Alcanivorax borkumensis wild type. The results of biodegradative tests showed their capability to grow at different temperatures. All strains showed biosurfactant production and emulsification activity. Our findings underline the importance to proceed in the isolation and characterization of Antarctic hydrocarbon-degrading bacterial strains since their biotechnological and environmental applications could be useful even for pollution remediation in polar areas.