Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(8): e2314128121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38359291

RESUMEN

Aberrant lysine lactylation (Kla) is associated with various diseases which are caused by excessive glycolysis metabolism. However, the regulatory molecules and downstream protein targets of Kla remain largely unclear. Here, we observed a global Kla abundance profile in colorectal cancer (CRC) that negatively correlates with prognosis. Among lactylated proteins detected in CRC, lactylation of eEF1A2K408 resulted in boosted translation elongation and enhanced protein synthesis which contributed to tumorigenesis. By screening eEF1A2 interacting proteins, we identified that KAT8, a lysine acetyltransferase that acted as a pan-Kla writer, was responsible for installing Kla on many protein substrates involving in diverse biological processes. Deletion of KAT8 inhibited CRC tumor growth, especially in a high-lactic tumor microenvironment. Therefore, the KAT8-eEF1A2 Kla axis is utilized to meet increased translational requirements for oncogenic adaptation. As a lactyltransferase, KAT8 may represent a potential therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , Biosíntesis de Proteínas , Humanos , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias Colorrectales/genética , Catálisis , Microambiente Tumoral , Histona Acetiltransferasas
2.
Langmuir ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276098

RESUMEN

Accurate and rapid detection of the causative agent of a disease is of great importance in controlling the spread of the disease. This work developed a biosensor with the Bi2Te3 family of topological insulators for detection of the SARS-CoV-2 virulence factor. The Bi2Te3 family is a three-dimensional topological insulator material with topologically protected surface states; the presence of these surface states facilitates charge transfer between the electrode and electrolyte interface. Compared with the detection performance of Bi2Se3, BiSbTeSe2, and a trivial insulator like Sb2Se3, Bi2Te3 exhibits superior characteristics. A Bi2Te3 electrochemical detection platform is utilized to fabricate a sensor that can detect SARS-CoV-2 DNA, RNA, and antigen for label-free target detection. The concentration range of DNA detection by the biosensor using Bi2Te3 is between 1.0 × 10-15 and 1.0 × 10-10 M, and the detection limit can reach 1.41 × 10-16 M. Furthermore, it exhibits excellent selectivity and maintains good stability even after being stored for 14 days. This study provides a new way to apply topological insulator materials in the field of biosensors and use their unique electronic structure to improve the accuracy and speed of disease detection and diagnosis.

3.
J Sep Sci ; 47(13): e2400073, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965996

RESUMEN

Chirality is a fundamental property of nature. Separation and analysis of racemates are of great importance in the fields of medicine and the production of chiral biopharmaceutical intermediates. Chiral chromatography has the characteristics of a wide separation range, fast separation speed, and high efficiency. The development and preparation of novel chiral stationary phases with good chiral recognition and separation capacity is the core and key of chiral chromatographic separation and analysis. In this work, the representative research progress of novel chiral porous crystal materials including chiral covalent organic frameworks, chiral porous organic cages, chiral metal-organic frameworks, and chiral metal-organic cages used as chiral stationary phases of capillary gas chromatography and high-performance liquid chromatography over the last 4 years is reviewed in detail. The chiral recognition and separation properties of the representative studies in this review are also introduced and discussed.

4.
Analyst ; 148(15): 3666-3676, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37431281

RESUMEN

Photoelectrochemical sensors have outstanding advantages including high sensitivity and miniaturization for outdoor use. Recently, perovskite quantum dots have attracted significant attention due to their high photoluminescence quantum yield. Nonetheless, there is still a strong need to improve their performance in challenging aqueous biological applications. In this paper, based on the molecularly imprinted polymer encapsulation of CsPbBr3 perovskite quantum dot/TiO2 inverse opal heterojunction structures, linear photoelectrochemical detection of cholesterol in aqueous solution was obtained without the involvement of an enzyme. The attenuation of photocurrent intensity under intermittent irradiation within 900 s (45 on/off cycles) was only 8.6%, demonstrating the superior stability of CsPbBr3 based sensor here. At the same time, the minimum detection limit of 1.22 × 10-9 mol L-1 in buffer conditions was lower than that reported for cholesterol photoelectric sensors. It has also been shown that the photoelectrochemical sensor of CsPbBr3 here outperformed that of CH3NH3PbBr3, which is another important member of the perovskite family. Finally, the proposed photoelectrochemical sensor platform was successfully applied in the determination of cholesterol in challenging serum with satisfactory recovery. The synergism among CsPbBr3 perovskite quantum dots, TiO2 inverse opal structure and imprinted polymer has led to greatly improved water stability, super selectivity and sensitivity, thus promoting the development of perovskite-based biological sensors.

5.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834477

RESUMEN

ADP-ribosylation is a post-translational modification of proteins that plays a key role in various cellular processes, including DNA repair. Recently, significant progress has been made in understanding the mechanism and function of ADP-ribosylation in DNA repair. ADP-ribosylation can regulate the recruitment and activity of DNA repair proteins by facilitating protein-protein interactions and regulating protein conformations. Moreover, ADP-ribosylation can influence additional post-translational modifications (PTMs) of proteins involved in DNA repair, such as ubiquitination, methylation, acetylation, phosphorylation, and SUMOylation. The interaction between ADP-ribosylation and these additional PTMs can fine-tune the activity of DNA repair proteins and ensure the proper execution of the DNA repair process. In addition, PARP inhibitors have been developed as a promising cancer therapeutic strategy by exploiting the dependence of certain cancer types on the PARP-mediated DNA repair pathway. In this paper, we review the progress of ADP-ribosylation in DNA repair, discuss the crosstalk of ADP-ribosylation with additional PTMs in DNA repair, and summarize the progress of PARP inhibitors in cancer therapy.


Asunto(s)
Neoplasias , Poli(ADP-Ribosa) Polimerasas , Humanos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , ADP-Ribosilación , Reparación del ADN , Procesamiento Proteico-Postraduccional , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas/metabolismo
6.
Chirality ; 32(9): 1178-1185, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32623797

RESUMEN

Herein, we describe a new chiral amorphous metal-organic polyhedra used as the stationary phase for high-resolution gas chromatography (GC). The chiral stationary phase was coated onto a capillary column via a dynamic coating process and investigated for a variety of compounds. The experimental results showed that the chiral stationary phase exhibits good selectivity for linear alkanes, linear alcohols, polycyclic aromatic hydrocarbons, isomers, and chiral compounds. In addition, the column has the advantages of high column efficiency and short analysis time. The present work indicated that amorphous metal-organic polyhedra have great potential for application as a new type of stationary phase for GC.

7.
Anal Chem ; 91(11): 7245-7253, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30920798

RESUMEN

Ligand-targeting specific liposomal probes are increasingly used as imaging and delivery vehicles for in vivo diagnosis. Thereinto, the ligand variety and density profoundly affect the binding behaviors toward the target. The synergetic effect of different ligands could be achieved only when the optimized molecular-recognition configuration occurred. In this study, we construct a dual-peptides-targeting liposomal probe named BTLS that could synergistically bind two different sites of prominin-1, a cancer stem cell marker. At the distance of 11 Å between the two new peptides, ligands could insert into the hollow pocket of prominin-1 and BTLS could achieve the appropriate spatial structure, showing the strong binding affinity in both cellular and in vivo levels. It is indicated that the design of density-optimized peptide-targeted liposomes could be promising to maximize the multifunctional targeting effects on the cancer theranostics.


Asunto(s)
Antígeno AC133/análisis , Sondas Moleculares/química , Nanomedicina Teranóstica , Células Cultivadas , Células HEK293 , Células HT29 , Humanos , Ligandos , Liposomas/química , Simulación del Acoplamiento Molecular , Imagen Óptica , Péptidos/análisis , Péptidos/síntesis química , Resonancia por Plasmón de Superficie
8.
Molecules ; 24(14)2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31330945

RESUMEN

We have developed a methodology to capture acidic proteins, alkaline proteins, and glycoproteins separately in mouse serum using a combination of three functionalized temperature-responsive chromatographic stationary phases. The temperature-responsive polymer poly(N-isopropylacrylamide) was attached to the stationary phase, silica. The three temperature-responsive chromatographic stationary phase materials were prepared by reversible addition-fragmentation chain transfer polymerization. Alkaline, acidic, and boric acid functional groups were introduced to capture acidic proteins, alkaline proteins, and glycoproteins, respectively. The protein enrichment and release properties of the materials were examined using the acidic protein, bovine serum albumin; the alkaline protein, protamine; and the glycoprotein, horseradish peroxidase. Finally, the three materials were used to analyze mouse serum. Without switching the mobile phase, the capture and separation of mouse serum was achieved by the combination of three temperature-responsive chromatographic stationary phase materials. On the whole, 313 proteins were identified successfully. The number of different proteins identified using the new method was 1.46 times greater than the number of proteins that has been identified without applying this method. To our knowledge, this method is the first combinatorial use of three functionalized temperature-responsive chromatographic stationary phase silica materials to separate proteins in mouse serum.


Asunto(s)
Proteínas Sanguíneas/análisis , Cromatografía , Temperatura , Animales , Cromatografía/métodos , Cromatografía Líquida de Alta Presión , Ratones , Proteoma , Proteómica/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
9.
Molecules ; 19(7): 8752-61, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24968331

RESUMEN

Two high-speed countercurrent chromatography (HSCCC) modes were compared by separation of major alkaloids from crude extract of Picrasma quassioides. The conventional HSCCC separation was performed with a two-phase solvent system composed of petroleum ether-ethyl acetate-methanol-water (5:5:4.5:5.5, v/v/v/v) with 200 mg loading. pH-Zone-refining CCC was performed with two-phase solvent system composed of petroleum ether-ethyl acetate-n-butanol-water (3:2:7:9, v/v/v/v) where triethylamine (10 mM) was added to the upper organic stationary phase and hydrochloric acid (5 mM) was added to the lower aqueous phase with 2 g loading. From 2 g of crude extract, 87 mg of 5-methoxycanthin-6-one (a), 38 mg of 1-methoxy-ß-carboline (b), 134 mg of 1-ethyl-4,8-dimethoxy-ß-carboline (c), 74 mg of 1-ethoxycarbonyl-ß-carboline (d), 56 mg of 1-vinyl-4,8-dimethoxy-ß-carboline (e) and 26 mg of 1-vinyl-4-dimethoxy-ß-carboline (f) were obtained with purities of over 97.0%. The results indicated that pH-zone-refining CCC is an excellent separations tool at the multigram level.


Asunto(s)
Alcaloides/aislamiento & purificación , Picrasma/química , Extractos Vegetales/aislamiento & purificación , Alcaloides/química , Cromatografía Líquida de Alta Presión , Distribución en Contracorriente , Concentración de Iones de Hidrógeno , Extractos Vegetales/química , Extracción en Fase Sólida , Solventes/química
10.
Bioelectrochemistry ; 156: 108610, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38000205

RESUMEN

An unlabeled ratiometric molecular imprinted electrochemiluminescence sensor was developed for the determination of trace uric acid, based on MXene@NaAsc nanocomposites, CdSe@ZnS quantum dots and molecularly imprinted polymer composites modified glass carbon electrode. MXene@NaAsc stably enhanced the electron transfer and improved electrochemiluminescence intensity by acting as a base platform and signal amplifier for CdSe@ZnS quantum dots. Specific molecular imprinting cavities based on electropolymerization with o-phenylenediamine were formed to specifically identify uric acid. Combining the good sensitivity of electrochemiluminescence and the excellent selectivity of molecularly imprinted polymer, the ratio of optical signal and electrical signal was used as a comprehensive signal to achieve the detection of uric acid. Based on this, uric acid was detected in the range from 1 × 10-10 to 1 × 10-4 mol/L with the LOD of 18.13 pmol/L (S/N = 3). The developed sensor with easy preparation, great selectivity and excellent sensitivity could successfully detect uric acid in human serum.


Asunto(s)
Compuestos de Cadmio , Impresión Molecular , Nitritos , Puntos Cuánticos , Compuestos de Selenio , Elementos de Transición , Humanos , Técnicas Electroquímicas , Límite de Detección , Luminiscencia , Polímeros Impresos Molecularmente , Ácido Úrico
11.
Bioresour Technol ; 399: 130618, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518880

RESUMEN

Electrochemically active bacteria (EAB) exhibit promising prospects for space exploration and life support systems. However, the effects of the space environment on EAB are unclear. In this study, the effects of simulated microgravity on the current generation of mixed-culture EAB were illustrated, and the underlying mechanism was elucidated. The results demonstrated that the electrochemical activity of mixed-culture EAB was enhanced, which was mainly due to the enrichment of Geobacter and the increase in EAB biomass. Additionally, the genes and proteins of the biofilm changed obviously under simulated microgravity conditions, including: I) genes related to signal transfer, II) genes related to cell wall synthesis, and III) genes related to riboflavin synthesis. This study first revealed the enrichment in EAB abundance, the increase in EAB biomass, and the promotion of current generation under simulated microgravity.


Asunto(s)
Ingravidez , Estudios de Casos y Controles , Bacterias/genética , Bacterias/metabolismo , Biopelículas , Transporte de Electrón
12.
Food Chem ; 449: 139238, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583401

RESUMEN

Bovine serum albumin (BSA) has emerged as a biomarker for mammary gland health and cow quality, being recognized as a significant allergenic protein. In this study, a novel flexible molecular imprinted electrochemical sensor by surface electropolymerization using pyrrole (Py) as functional monomer, which can be better applied to the detection of milk quality marker BSA. Based on computational results, with regard to all polypyrrole (PPy) conformations and amino-acid positions within the protein, the BSA molecule remained firmly embedded into PPy polymers with no biological changes. The molecular imprinted electrochemical sensor displayed a broad linear detection range from 1.0 × 10-4 to 50 ng·mL-1 (R2 = 0.995) with a low detection limit (LOD) of 4.5 × 10-2 pg·mL-1. Additionally, the sensor was highly selective, reproducible, stable and recoverable, suggesting that it might be utilized for the evaluation of milk quality.


Asunto(s)
Leche , Impresión Molecular , Albúmina Sérica Bovina , Animales , Leche/química , Bovinos , Albúmina Sérica Bovina/química , Pirroles/química , Polímeros/química , Biomarcadores/análisis , Límite de Detección , Técnicas Electroquímicas/instrumentación
13.
Sci Adv ; 10(28): eadn5698, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38985882

RESUMEN

Gold nanoparticle-based lateral flow immunoassays (AuNP LFIAs) are widely used point-of-care (POC) sensors for in vitro diagnostics. However, the sensitivity limitation of conventional AuNP LFIAs impedes the detection of trace biomarkers. Several studies have explored the size and shape factors of AuNPs and derivative nanohybrids, showing limited improvements or enhanced sensitivity at the cost of convenience and affordability. Here, we investigated surface chemistry on the sensitivity of AuNP LFIAs. By modifying surface ligands, a surface chemistry strategy involving weakly ionized AuNPs enables ultrasensitive naked-eye LFIAs (~100-fold enhanced sensitivity). We demonstrated how this surface chemistry-amplified immunoassay approach modulates nanointerfacial bindings to promote antibody adsorption and higher activity of adsorbed antibodies. This surface chemistry design eliminates complex nanosynthesis, auxiliary devices, or additional reagents while efficiently improving sensitivity with advantages: simplified fabrication process, excellent reproducibility and reliability, and ultrasensitivity toward various biomarkers. The surface chemistry using weakly ionized AuNPs represents a versatile approach for sensitizing POC sensors.


Asunto(s)
Oro , Nanopartículas del Metal , Sistemas de Atención de Punto , Oro/química , Nanopartículas del Metal/química , Inmunoensayo/métodos , Humanos , Técnicas Biosensibles/métodos , Reproducibilidad de los Resultados , Biomarcadores/análisis
14.
Talanta ; 280: 126709, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39151317

RESUMEN

Biosensors, devices capable of detecting biomolecules or bioactive substances, have recently become one of the important tools in the fields of bioanalysis and medical diagnostics. A biosensor is an analytical system composed of biosensitive elements and signal-processing elements used to detect various biological and chemical substances. Biomimetic elements are key to biosensor technology and are the components in a sensor that are responsible for identifying the target analyte. The construction methods and working principles of biosensors based on synthetic biomimetic elements, such as DNAzyme, molecular imprinted polymers and aptamers, and their updated applications in biomedical analysis are summarised. Finally, the technical bottlenecks and future development prospects for biomedical analysis are summarised and discussed.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN Catalítico , Técnicas Biosensibles/métodos , Humanos , Aptámeros de Nucleótidos/química , ADN Catalítico/química , ADN Catalítico/metabolismo , Animales
15.
Molecules ; 18(12): 15490-500, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24352009

RESUMEN

pH-Zone refining counter-current chromatography was successfully applied to the preparative isolation and purification of six alkaloids from the ethanol extracts of Uncaria macrophylla Wall. Because of the low content of alkaloids (about 0.2%, w/w) in U. macrophylla Wall, the target compounds were enriched by pH-zone refining counter-current chromatography using a two-phase solvent system composed of petroleum ether-ethyl acetate-isopropanol-water (2:6:3:9, v/v), adding 10 mM triethylamine in organic stationary phase and 5 mM hydrochloric acid in aqueous mobile phase. Then pH-zone refining counter-current chromatography using the other two-phase solvent system was used for final purification. Six target compounds were finally isolated and purified by following two-phase solvent system composed of methyl tert-butyl ether (MTBE)-acetonitrile-water (4:0.5:5, v/v), adding triethylamine (TEA) (10 mM) to the organic phase and HCl (5 mM) to aqueous mobile phase. The separation of 2.8 g enriched total alkaloids yielded 36 mg hirsutine, 48 mg hirsuteine, 82 mg uncarine C, 73 mg uncarine E, 163 mg rhynchophylline, and 149 mg corynoxeine, all with purities above 96% as verified by HPLC Their structures were identified by electrospray ionization-mass spectrometry (ESI-MS) and 1H-NMR spectroscopy.


Asunto(s)
Alcaloides/química , Alcaloides/aislamiento & purificación , Distribución en Contracorriente/métodos , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Estructura Molecular , Solventes/química , Uncaria/química
16.
J Chromatogr A ; 1702: 464100, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37263056

RESUMEN

Herein, a chiral multishelled mesoporous carbon nanospheres (MCNs) with unique spiral multishelled hollow mesoporous chiral structure is synthesized; the MCNs can be used as stationary phases for high-resolution gas chromatography (GC) and have good separation capacity. The successful preparation of MCNs is verified by a variety of characterizations. In addition, the MCNs-coated capillary column shows excellent separation performance for n-alkanes, n-alcohols, aromatic compounds, and esters, and it has a faster analysis time than the HP-5 commercial capillary column. The chromatography separation performance for various isomers and racemates of the MCNs stationary phase was evaluated, and it showed good separation capability for amino acid derivatives. The MCNs-coated capillary column has been demonstrated to present good reproducibility and stability. In summary, all of the chromatography experiments in this work indicate that this new stationary phase of the MCNs has good application potential for GC capillary separation.


Asunto(s)
Carbono , Nanosferas , Reproducibilidad de los Resultados , Cromatografía de Gases/métodos , Ésteres
17.
J Mater Chem B ; 11(3): 631-639, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36537727

RESUMEN

Interferon-γ (IFN-γ) is one of the crucial inflammatory cytokines as an early indicator of multiple diseases. A fast, simple, sensitive and reliable IFN-γ detection method is valuable for early diagnosis and monitoring of treatment. In this work, we creatively developed an electrochemical aptasensor based on the topological material Bi2Se3 for sensitive IFN-γ quantification. The high-quality Bi2Se3 sheet was directly exfoliated from a single crystal, which immobilized the synthesized IFN-γ aptamer. Under optimal conditions, the electrochemical signal revealed a wide linear relation along with the logarithmic concentration of IFN-γ from 1.0 pg mL-1 to 100.0 ng mL-1, with the limit of detection as low as 0.5 pg mL-1. The topological material Bi2Se3 with Dirac surface states improved the electrochemical signal/noise ratio and thus the sensitivity of the sensors. Furthermore, this electrochemical aptasensor exhibited excellent specificity and stability, which could be attributed to the large-scale smooth surface of the Bi2Se3 sheet with few defects decreasing the non-specific absorption. The developed biosensor has the same good performance as the ELISA method for detecting the real serum samples. Our work demonstrates that the developed electrochemical aptasensors based on topological materials have great potential in the field of clinical determination.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Interferón gamma , Bismuto/química , Selenio/química
18.
Front Cell Dev Biol ; 10: 903781, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35557952

RESUMEN

The repair of DNA damage is a complex process, which helps to maintain genome fidelity, and the ability of cancer cells to repair therapeutically DNA damage induced by clinical treatments will affect the therapeutic efficacy. In the past decade, great success has been achieved by targeting the DNA repair network in tumors. Recent studies suggest that DNA damage impacts cellular innate and adaptive immune responses through nucleic acid-sensing pathways, which play essential roles in the efficacy of DNA repair targeted therapy. In this review, we summarize the current understanding of the molecular mechanism of innate immune response triggered by DNA damage through nucleic acid-sensing pathways, including DNA sensing via the cyclic GMP-AMP synthase (cGAS), Toll-like receptor 9 (TLR9), absent in melanoma 2 (AIM2), DNA-dependent protein kinase (DNA-PK), and Mre11-Rad50-Nbs1 complex (MRN) complex, and RNA sensing via the TLR3/7/8 and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). Furthermore, we will focus on the recent developments in the impacts of nucleic acid-sensing pathways on the DNA damage response (DDR). Elucidating the DDR-immune response interplay will be critical to harness immunomodulatory effects to improve the efficacy of antitumor immunity therapeutic strategies and build future therapeutic approaches.

19.
J Chromatogr A ; 1675: 463150, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35660319

RESUMEN

Hydrogen-bonded organic frameworks (HOFs) are two dimensional (2D) or three dimensional (3D) porous crystalline materials constructed by Hydrogen bond interaction. In recent years, a variety of functional HOF materials have been successfully synthesized and used in structural identification, environmental pollutant removal, chiral resolution, drug delivery, fluorescence sensing, etc. Here, we first reported that a HOF to coated capillary column for high-resolution gas chromatographic separation of a wide range of analytes, including n-alkanes, n-alcohols, polycyclic aromatic hydrocarbons, and positional isomers, especially for racemates, the HOFs column showed excellent separation repeatability and reproducibility. The relative standard deviation (RSD) values for the retention times were in the range of 0.37-2.43% for run to run (n = 3), 0.38-2.51% for day-to-day (n = 3), and 0.31-2.54% for column-to-column (n = 3), respectively. Moreover, we applied density-functional theory to calculate the adsorption of enantiomers in HOF structures. This work proved that the HOFs had great application prospects as stationary phase in gas chromatography.


Asunto(s)
Hidrógeno , Cromatografía de Gases/métodos , Isomerismo , Reproducibilidad de los Resultados , Estereoisomerismo
20.
Bioelectrochemistry ; 146: 108154, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35550252

RESUMEN

Human IgG is one of the most important immunoglobulins in the human body. The present study described the fabrication of four kinds of layer-by-layer structures of copper metal-organic frameworks (Cu-MOFs) on the working electrode by electrodeposition, which were then applied as an electrochemical sensor for the sensitive determination of IgG in serum. First, MOFs synthesized using different deposition potentials are expected to have varied morphology and properties. Herein, four copper MOFs (Cu-MOFs) were electrosynthesized by a simple and direct reduction approach. The as-synthesized Cu-MOFs exhibit varied morphology and electrocatalytic behavior. Then, IgG was employed as a template in the electropolymerization of pyrrole-imprinted films on the surface of glassy carbon electrodes. Finally, the template protein was removed to form a molecularly imprinted film with the capability to qualitatively and quantitatively signaling of IgG. Under optimized conditions, the sensor for IgG exhibits a wide detection range of 0.01-10 ng mL-1 with a limit of detection (LOD) of 3 pg mL-1 (S/N = 3). Besides, other parameters including the selectivity, reproducibility (RSD 3.6%), and recovery rate (95.2-102.0%) are all satisfactory. The practicability of the sensor was verified by detecting IgG in human serum samples, which indicated that the sensor was suitable for potential clinical applications.


Asunto(s)
Estructuras Metalorgánicas , Impresión Molecular , Cobre , Técnicas Electroquímicas , Electrodos , Humanos , Inmunoglobulina G , Límite de Detección , Estructuras Metalorgánicas/química , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA