Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2317408121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285953

RESUMEN

Light plays a central role in plant growth and development, providing an energy source and governing various aspects of plant morphology. Previous study showed that many polyadenylated full-length RNA molecules within the nucleus contain unspliced introns (post-transcriptionally spliced introns, PTS introns), which may play a role in rapidly responding to changes in environmental signals. However, the mechanism underlying post-transcriptional regulation during initial light exposure of young, etiolated seedlings remains elusive. In this study, we used FLEP-seq2, a Nanopore-based sequencing technique, to analyze nuclear RNAs in Arabidopsis (Arabidopsis thaliana) seedlings under different light conditions and found numerous light-responsive PTS introns. We also used single-nucleus RNA sequencing (snRNA-seq) to profile transcripts in single nucleus and investigate the distribution of light-responsive PTS introns across distinct cell types. We established that light-induced PTS introns are predominant in mesophyll cells during seedling de-etiolation following exposure of etiolated seedlings to light. We further demonstrated the involvement of the splicing-related factor A. thaliana PROTEIN ARGININE METHYLTRANSFERASE 5 (AtPRMT5), working in concert with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical repressor of light signaling pathways. We showed that these two proteins orchestrate light-induced PTS events in mesophyll cells and facilitate chloroplast development, photosynthesis, and morphogenesis in response to ever-changing light conditions. These findings provide crucial insights into the intricate mechanisms underlying plant acclimation to light at the cell-type level.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteína-Arginina N-Metiltransferasas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Plantones/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Luz
2.
Proc Natl Acad Sci U S A ; 120(44): e2308984120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37874858

RESUMEN

Leymus chinensis, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of L. chinensis with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to Psathyrostachys and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in L. chinensis. We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild L. chinensis with features such as polyploidization and self-incompatibility.


Asunto(s)
Fitomejoramiento , Poaceae , Poaceae/genética , Genoma , Evolución Molecular
3.
Sci China Life Sci ; 67(1): 149-160, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897613

RESUMEN

Alkaline soils pose an increasing problem for agriculture worldwide, but using stress-tolerant plants as green manure can improve marginal land. Here, we show that the legume Sesbania cannabina is very tolerant to alkaline conditions and, when used as a green manure, substantially improves alkaline soil. To understand genome evolution and the mechanisms of stress tolerance in this allotetraploid legume, we generated the first telomere-to-telomere genome assembly of S. cannabina spanning ∼2,087 Mb. The assembly included all centromeric regions, which contain centromeric satellite repeats, and complete chromosome ends with telomeric characteristics. Further genome analysis distinguished A and B subgenomes, which diverged approximately 7.9 million years ago. Comparative genomic analysis revealed that the chromosome homoeologs underwent large-scale inversion events (>10 Mb) and a significant, transposon-driven size expansion of the chromosome 5A homoeolog. We further identified four specific alkali-induced phosphate transporter genes in S. cannabina; these may function in alkali tolerance by relieving the deficiency in available phosphorus in alkaline soil. Our work highlights the significance of S. cannabina as a green tool to improve marginal lands and sheds light on subgenome evolution and adaptation to alkaline soils.


Asunto(s)
Fabaceae , Sesbania , Sesbania/genética , Estiércol , Suelo , Verduras/genética , Álcalis , Telómero/genética
4.
Sci China Life Sci ; 66(2): 197-208, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36239908

RESUMEN

Phased small interfering RNAs (phasiRNAs) are abundantly expressed in anthers and linked to environment-related male fertility in grasses, yet how they function under different environmental conditions remains unclear. Here, we identified a rice (Oryza sativa) low temperature-induced Argonaute (AGO) protein, OsAGO1d, that is responsible for generating phasiRNAs and preserving male fertility at low temperature. Loss of OsAGO1d function causes low-temperature male sterility associated with delayed programmed cell death of tapetal cells during anther development. OsAGO1d binds miR2118 and miR2275 family members and triggers phasiRNA biogenesis; it also binds 21-nt phasiRNAs with a 5' terminal U. In total, phasiRNAs from 972 loci are OsAGO1d-dependent. OsAGO1d protein moves from anther wall cells into meiocytes, where it loads miR2275 to produce 24-nt phasiRNAs. Together, our results show that OsAGO1d acts as a mobile signal to fine-tune phasiRNA production and this function is important for male fertility at low temperature.


Asunto(s)
MicroARNs , Oryza , ARN Interferente Pequeño/genética , MicroARNs/genética , MicroARNs/metabolismo , Oryza/metabolismo , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fertilidad/genética , Regulación de la Expresión Génica de las Plantas , ARN de Planta/genética
5.
Nat Plants ; 7(10): 1364-1378, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34650265

RESUMEN

It is increasingly evident that various RNAs can bind chromatin to regulate gene expression and genome organization. Here we adapted a sequencing-based technique to profile RNA-chromatin interactions at a genome-wide scale in Arabidopsis seedlings. We identified more than 10,000 RNA-chromatin interactions mediated by protein-coding RNAs and non-coding RNAs. Cis and intra-chromosomal interactions are mainly mediated by protein-coding RNAs, whereas inter-chromosomal interactions are primarily mediated by non-coding RNAs. Many RNA-chromatin interactions tend to positively correlate with DNA-DNA interactions, suggesting their mutual influence and reinforcement. We further show that some RNA-chromatin interactions undergo alterations in response to biotic and abiotic stresses and that altered RNA-chromatin interactions form co-regulatory networks. Our study provides a global view on RNA-chromatin interactions in Arabidopsis and a rich resource for future investigations of regulatory roles of RNAs in gene expression and genome organization.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , ARN de Planta/genética , ARN de Planta/metabolismo , Plantones/genética , Plantones/metabolismo , Estrés Fisiológico/genética
6.
Cell Rep ; 15(7): 1467-1480, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27160914

RESUMEN

The growth plate (GP) comprising sequentially differentiated cell layers is a critical structure for bone elongation and regeneration. Although several key regulators in GP development have been identified using genetic perturbation, systematic understanding is still limited. Here, we used single-cell RNA-sequencing (RNA-seq) to determine the gene expression profiles of 217 single cells from GPs and developed a bioinformatics pipeline named Sinova to de novo reconstruct physiological GP development in both temporal and spatial high resolution. Our unsupervised model not only confirmed prior knowledge, but also enabled the systematic discovery of genes, potential signal pathways, and surface markers CD9/CD200 to precisely depict development. Sinova further identified the effective combination of transcriptional factors (TFs) that regulates GP maturation, and the result was validated using an in vitro EGFP-Col10a screening system. Our case systematically reconstructed molecular cascades in GP development through single-cell profiling, and the bioinformatics pipeline is applicable to other developmental processes. VIDEO ABSTRACT.


Asunto(s)
Placa de Crecimiento/embriología , Placa de Crecimiento/metabolismo , Análisis de Secuencia de ARN/métodos , Transducción de Señal/genética , Análisis de la Célula Individual/métodos , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Tipificación del Cuerpo/genética , Citometría de Flujo , Redes Reguladoras de Genes , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Factores de Tiempo , Factores de Transcripción/metabolismo
8.
Rev Sci Instrum ; 84(6): 064706, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23822365

RESUMEN

Novel double pulse forming lines (PFLs) are fabricated with two separate coaxial single PFLs with the same dimensions with each inner cylinder of the PFL negatively charged to improve the breakdown voltage of PFL and the energy storage density of de-ionized water. A spiral line is adopted for the single PFL to raise the impedance of the PFL and prolongs the pulse duration. Ethylene glycol is mixed with de-ionized water to raise the leakage resistance and the impedance of the single PFL. A double structure is adopted to reduce the breakdown voltage requirement of the transformer and the switch. At the same time, the double structure is an advantage to raise the impedance of the PFL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA