Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Radiol ; 34(1): 60-68, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37566265

RESUMEN

OBJECTIVES: To investigate measurements derived from plain and enhanced spectral CT in differentiating osteoblastic bone metastasis (OBM) from bone island (BI). MATERIALS AND METHODS: From January to November 2020, 73 newly diagnosed cancer patients with 201 bone lesions (OBM = 92, BI = 109) having received spectral CT were retrospectively enrolled. Measurements including CT values of 40-140 keV, slope of the spectral curve, effective atomic number (Zeff), water (calcium) density, calcium (water) density, and Iodine (calcium) density were derived from manually segmented lesions on plain and enhanced spectral CT, and then analyzed using Student t-test and Pearson's correlation. Multivariate analysis was performed to build models (plain spectral model, enhanced spectral CT model, and combined model) for the discrimination of OBM and BI with performance evaluated using receiver operator characteristics curve and DeLong test. RESULTS: All features were significantly different between the BI group and OBM group (all p < 0.05), highly correlated with the corresponding features between plain and enhanced spectral CT both in OBM (r: 0.392-0.763) and BI (r: 0.430-0.544). As for the model performance, the combined model achieved the best performance (AUC = 0.925, 95% CI: 0.879 to 0.957), which significantly outperformed the plain spectral CT model (AUC = 0.815, 95% CI: 0.754 to 0.866, p < 0.001) and enhanced spectral CT model (AUC = 0.901, 95% CI: 0.852 to 0.939, p = 0.024) in differentiating OBM and BI. CONCLUSION: In addition to plain spectral CT measurements, enhanced spectral CT measurements would further significantly benefit the differential diagnosis. CLINICAL RELEVANCE STATEMENT: Measurements derived either from plain or enhanced spectral CT could provide additional valuable information to improve the differential diagnosis between OBM and BI in newly diagnosed cancer patients. KEY POINTS: • We intend to investigate plain and enhanced spectral CT measurements in differentiating OBM from BI. • Both plain and enhanced spectral CT help in discriminating OBM and BI in newly diagnosed cancer patients. • Enhanced spectral CT measurements further improve plain spectral CT measurements-based differential diagnosis.


Asunto(s)
Neoplasias Óseas , Calcio , Humanos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Neoplasias Óseas/diagnóstico por imagen , Agua
2.
J Magn Reson Imaging ; 57(3): 824-833, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35816177

RESUMEN

BACKGROUND: Amide proton transfer (APT) imaging has been increasingly applied in tumor characterization. However, its value in evaluating breast cancer remains undetermined. PURPOSE: To assess the diagnostic performance of APT imaging in breast cancer and its association with prognostic histopathologic characteristics. STUDY TYPE: Prospective. SUBJECTS: Eighty-four patients with breast lesions. FIELD STRENGTH/SEQUENCE: A 3.0 T/single-shot fast spin echo APT imaging. ASSESSMENT: APTw signal in breast lesion was quantified. Lesion malignancy, T stage, grades, Ki-67 index, molecular biomarkers (estrogen receptor [ER] expression, progesterone receptor [PR] expression, human epidermal growth factor receptor [HER-2] expression), molecular subtypes (luminal A, luminal B, triple negative, and HER-2 enriched) were determined. STATISTICAL TESTS: Student t-test, one-way analysis of variance, receiver operating characteristic analysis, and Pearson's correlation with P < 0.05 as statistical significance. RESULTS: APTw signal was significantly higher in malignant lesions (1.55% ± 1.24%) than in benign lesions (0.54% ± 1.13%), and in grade III lesions than in grade II lesions (1.65% ± 0.84% vs. 0.96% ± 0.96%), and in T2- (1.57% ± 0.64%) and T3-stage lesions (1.54% ± 0.63%) than in T1-stage lesions (0.81% ± 0.64%) for invasive breast carcinoma of no special type. APTw signal significantly correlated with Ki-67 index (r = 0.364) but showed no significant difference in groups of ER (P = 0.069), PR (P = 0.069), HER-2 (P = 0.961), and among molecular subtypes (P = 0.073). DATA CONCLUSION: APT imaging shows potential in differentiating breast lesion malignancy and associates with prognosis-related tumor grade, T stage, and proliferative activity. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Neoplasias de la Mama , Protones , Humanos , Femenino , Amidas , Antígeno Ki-67/metabolismo , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Mama/metabolismo
3.
Biochem Biophys Res Commun ; 636(Pt 1): 197-204, 2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36335870

RESUMEN

High malignancy and mortality in colon cancer require clarifying the underlying mechanisms of colon cancer carcinogenesis and exploring new targets or drugs for the clinical treatment of colon cancer. Resveratrol (Res), a natural compound, shows cytotoxicity against various tumors. However, the specific anti-cancer mechanism of Res remains unclear. In the present study, we aimed to explore the anti-cancer activity of Res against colon cancer cells and the possible mechanism. The results showed that Res could inhibit cell proliferation and induce cell cycle arrest and apoptosis in HCT116 cells. Western blotting and Polymerase chain reaction (PCR) showed that Res increased the phosphorylated YAP (pYAP) levels and decreased YAP total protein level and decreased the mRNA expression of the YAP signaling downstream genes CTGF and CYR61. The effects of Res on pYAP were enhanced by YAP inhibitor verteporfin (VP). VP also enhanced the effects of Res on decreasing viability and inducing apoptosis. Furthermore, the molecular docking analysis indicated Res could bind with YAP-TEAD through van der Waals, pi-alkyl, and pi-pi stacked interactions. Our findings suggested that the anti-cancer activity of Res may be mediated via activating Hippo/YAP signaling and partially disturbing the interaction between YAP and TEAD. All this evidence supports that Res may be an efficacious drug for colon cancer treatment.


Asunto(s)
Neoplasias del Colon , Proteínas Serina-Treonina Quinasas , Humanos , Resveratrol/farmacología , Simulación del Acoplamiento Molecular , Apoptosis , Proliferación Celular , Verteporfina/farmacología , Neoplasias del Colon/tratamiento farmacológico
4.
Magn Reson Med ; 88(1): 322-331, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35324024

RESUMEN

PURPOSE: Creatine chemical exchange saturation transfer (CrCEST) MRI is used increasingly in muscle imaging. However, the CrCEST measurement depends on the RF saturation duration (Ts) and relaxation delay (Td), and it is challenging to compare the results of different scan parameters. Therefore, this study aims to evaluate the quasi-steady-state (QUASS) CrCEST MRI on clinical 3T scanners. METHODS: T1 and CEST MRI scans of Ts/Td of 1 s/1 s and 2 s/2 s were obtained from a multi-compartment creatine phantom and 5 healthy volunteers. The CrCEST effect was quantified with asymmetry analysis in the phantom, whereas 5-pool Lorentzian fitting was applied to isolate creatine from phosphocreatine, amide proton transfer, combined magnetization transfer and nuclear Overhauser enhancement effects, and direct water saturation in four major muscle groups of the lower leg. The routine and QUASS CrCEST measurements were compared under two different imaging conditions. Paired Student's t-test was performed with p-values less than 0.05 considered statistically significant. RESULTS: The phantom study showed a substantial influence of Ts/Td on the routine CrCEST quantification (p = 0.02), and such impact was mitigated with the QUASS algorithm (p = 0.20). The volunteer experiment showed that the routine CrCEST, amide proton transfer, and combined magnetization transfer and nuclear Overhauser enhancement effects increased significantly with Ts and Td (p < 0.05) and were significantly smaller than the corresponding QUASS indices (p < 0.01). In comparison, the QUASS CrCEST MRI showed little dependence on Ts and Td, indicating its robustness and accuracy. CONCLUSION: The QUASS CrCEST MRI is feasible to provide fast and accurate muscle creatine imaging.


Asunto(s)
Creatina , Protones , Algoritmos , Amidas , Humanos , Imagen por Resonancia Magnética/métodos , Músculos
5.
Mikrochim Acta ; 186(9): 609, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31392427

RESUMEN

Tiopronin is a widely used drug for treatment of cystinuria, rheumatoid arthritis and hepatic disorders. It is also an antidote to heavy metal poisoning and a radioprotective agent. A method is described for rapid and sensitive determination of tiopronin using DNA-stabilized silver nanoclusters (DNA-AgNCs) as a fluorescent probe. Tiopronin can selectively bind to DNA-AgNCs to form a stable Ag-S bond upon which the red photoluminescence (best measured at excitation/emission wavelengths of 590/640 nm) is quenched. The finding is used to design an assay that has a linear response in the 1-150 nM tiopronin concentration range and a 270 pM limit of detection. Compared with previously reported methods, the present approach is more rapid, highly sensitive and selective. It has been successfully applied in the detection of tiopronin in spiked urine and serum, and in pharmaceutical products (tablets and injections). Graphical abstract An ultrasensitive and reliable method for tiopronin assay is developed using red-emissive silver nanoclusters as a fluorescent probe. It has been successfully applied in the determination of tiopronin in biological fluids and pharmaceutical products.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/química , Colorantes Fluorescentes/química , Límite de Detección , Nanoestructuras/química , Plata/química , Tiopronina/análisis , Secuencia de Bases , ADN/genética , Humanos , Tiopronina/sangre , Tiopronina/orina
6.
Semin Respir Crit Care Med ; 36(3): 388-407, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26024347

RESUMEN

Occupational asthma (OA) and work-exacerbated asthma (WEA), collectively known as work-related asthma (WRA), have been recognized as the most prevalent work-related lung diseases in the industrialized world. OA is asthma caused by workplace conditions, and is subdivided into sensitizer-induced (allergic) OA and irritant-induced (nonallergic) OA. WEA is asthma that is made worse, but was not initially caused, by workplace conditions. Although WRA is rarely fatal, patients with WRA frequently experience excessive time lost from work, workplace-specific severe disability, loss of income, job loss, and related psychosocial and financial problems. More than 400 workplace environmental agents have been reported to cause WRA, and are classified by molecular weight and allergenic and irritant properties. Diagnosis of WRA requires confirmation of a diagnosis of asthma plus evidence that the asthma was caused or worsened by workplace conditions. Accuracy of diagnosis is important because either overdiagnosis or missed diagnosis of WRA can be problematic for the patient. Self-reported clinical symptoms alone have only fair sensitivity and specificity for OA. If possible, diagnostic assessment should also include objective evidence with functional and immunologic testing. Treatment and prevention of onset or worsening of WRA can be highly effective and typically include both optimal medical management (generally the same as for non-WRA) and, importantly, avoidance of sensitizer or irritant exposures that caused or exacerbate the asthma. In most cases of OA, prognosis is better with cessation rather than reduction of exposure, and this may require substantial changes in the workplace environment or change of job or even profession.


Asunto(s)
Asma Ocupacional/etiología , Exposición Profesional/efectos adversos , Lugar de Trabajo , Alérgenos/inmunología , Asma Ocupacional/diagnóstico , Asma Ocupacional/fisiopatología , Humanos , Pronóstico , Sensibilidad y Especificidad
7.
J Occup Environ Hyg ; 11(9): D131-43, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25046545

RESUMEN

Following Hurricane Sandy, which hit New York City and New Jersey in October 2012, industrial hygienists from the Mount Sinai and Belleview/New York University occupational medicine clinics conducted monitoring for diesel exhaust and silica in lower Manhattan and Rockaway Peninsula. Average daytime elemental carbon levels at three stations in lower Manhattan on December 4, 2012, ranged from 9 to18 µg/m(3). Sub-micron particle counts at various times on the same day were over 200,000 particles per cubic centimeter on many streets in lower Manhattan. In Rockaway Peninsula on December 12, 2012, all average daytime elemental carbon levels were below a detection limit of approximately 7 µg/m(3). The average daytime crystalline silica dust concentration was below detection at two sites on Rockaway Peninsula, and was 0.015 mg/m(3) quartz where sand was being replaced on the beach. The daily average levels of elemental carbon and airborne particulates that we measured are in the range of levels that have been found to cause respiratory effects in sensitive subpopulations like asthmatic patients after 2 hr of exposure. Control of exposure to diesel exhaust must be considered following natural disasters where diesel-powered equipment is used in cleanup and recovery. Although peak silica exposures were not likely captured in this study, but were reported by a government agency to have exceeded recommended guidelines for at least one cleanup worker, we recommend further study of silica exposures when debris removal operations or traffic create visible levels of suspended dust from soil or sand.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Tormentas Ciclónicas , Desastres , Monitoreo del Ambiente , Dióxido de Silicio/análisis , Emisiones de Vehículos/análisis , Administración de Residuos , Carbono/análisis , Industria de la Construcción , Polvo/análisis , Humanos , Exposición por Inhalación/análisis , Ciudad de Nueva York , Exposición Profesional/análisis
8.
Quant Imaging Med Surg ; 14(1): 335-351, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223072

RESUMEN

Background: In low-dose computed tomography (LDCT) lung cancer screening, soft tissue is hardly appreciable due to high noise levels. While deep learning-based LDCT denoising methods have shown promise, they typically rely on structurally aligned synthesized paired data, which lack consideration of the clinical reality that there are no aligned LDCT and normal-dose CT (NDCT) images available. This study introduces an LDCT denoising method using clinically structure-unaligned but paired data sets (LDCT and NDCT scans from the same patients) to improve lesion detection during LDCT lung cancer screening. Methods: A cohort of 64 patients undergoing both LDCT and NDCT was randomly divided into training (n=46) and testing (n=18) sets. A two-stage training approach was adopted. First, Gaussian noise was added to NDCT data to create simulated LDCT data for generator training. Then, the model was trained on a clinically structure-unaligned paired data set using a Wasserstein generative adversarial network (WGAN) framework with the initial generator weights obtained during the first stage of training. An attention mechanism was also incorporated into the network. Results: Validated on a clinical CT data set, our proposed method outperformed other available methods [CycleGAN, Pixel2Pixel, block-matching and three-dimensional filtering (BM3D)] in noise removal and detail retention tasks in terms of the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and root mean square error (RMSE) metrics. Compared with the results produced by BM3D, our method yielded an average improvement of approximately 7% in terms of the three evaluation indicators. The probability density profile of the denoised CT output produced using our method best fit the reference NDCT scan. Additionally, our two-stage model outperformed the one-stage WGAN-based model in both objective and subjective evaluations, further demonstrating the higher effectiveness of our two-stage training approach. Conclusions: The proposed method performed the best in removing noise from LDCT scans and exhibited good detail retention, which could potentially enhance the lesion detection and characterization effects obtained for soft tissues in the scanning scope of LDCT lung cancer screening.

9.
Exp Ther Med ; 25(6): 248, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37153899

RESUMEN

Known as a tumour suppressor gene, p53 also plays a key role in controlling the differentiation of mesenchymal stem cells (MSCs). Bone morphogenetic protein 9 (BMP9) has been identified as a potent factor in inducing osteogenic differentiation of MSCs, but its relationship with p53 remains unclear. The present study revealed that TP53 was expressed at higher levels in MSCs from patients with osteoporosis and was associated with the top 10 core central genes found in the current osteoporosis genetic screen. p53 was expressed in C2C12, C3H10T1/2, 3T3-L1, MEFs, and MG-63 cell lines, and could be upregulated by BMP9, as measured by western blotting and reverse-transcription quantitative PCR (RT-qPCR). Furthermore, overexpression of p53 increased the mRNA and protein levels of osteogenic marker Runx2 and osteopontin, as evaluated by western blotting and RT-qPCR in BMP9-induced MSCs, whereas the p53 inhibitor pifithrin (PFT)-α attenuated these effects. The same trend was found in alkaline phosphatase activities and matrix mineralization, as measured by alkaline phosphatase staining and alizarin red S staining. Moreover, p53 overexpression reduced adipo-differentiation markers of PPARγ and lipid droplet formation, as measured by western blotting, RT-qPCR and oil red O staining, respectively, whereas PFT-α facilitated adipo-differentiation in MSCs. In addition, p53 promoted TGF-ß1 expression and inhibition of TGF-ß1 by LY364947 partially attenuated the effects of p53 on promoting BMP9-induced MSC osteo-differentiation and inhibiting adipo-differentiation. The inhibitory effect of PFT-α on osteogenic markers and the promoting effect on adipogenic markers can be reversed when combined with TGF-ß1. TGF-ß1 may enhance the promotion of osteo-differentiation of MSCs by p53 through inhibition of adipo-differentiation. Collectively, by promoting BMP9-induced MSCs bone differentiation and inhibiting adipose differentiation, p53 may be a novel therapeutic target for bone-related diseases.

10.
Int J Biochem Cell Biol ; 154: 106341, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442735

RESUMEN

Bone morphogenetic protein 9 (BMP9) is an effective osteogenic factor and a promising candidate for bone tissue engineering. The osteoblastic potential of BMP9 needs to be further increased to overcome its shortcomings. However, the details of how BMP9 triggers osteogenic differentiation in mesenchymal stem cells (MSCs) are unclear. In this study, we used real-time PCR, western blot, histochemical staining, mouse ectopic bone formation model, immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation to investigate the role of pyruvate dehydrogenase kinase 4 (PDK4) in BMP9-induced osteogenic differentiation of C3H10T1/2 cells, as well as the underlying mechanism. We found that PDK4 was upregulated by BMP9 in C3H10T1/2 cells. BMP9-induced osteogenic markers and bone mass were increased by PDK4 overexpression, but decreased by PDK4 silencing. ß-catenin protein level was increased by BMP9, which was enhanced by PDK overexpression and decreased by PDK4 silencing. BMP9-induced osteogenic markers were reduced by PDK4 silencing, which was almost reversed by ß-catenin overexpression. PDK4 increased the BMP9-induced osteogenic markers, which was almost eliminated by ß-catenin silencing. Sclerostin was mildly decreased by BMP9 or PDK4, and significantly decreased by combined BMP9 and PDK4. In contrast, sclerostin increased significantly when BMP9 was combined with PDK4 silencing. BMP9-induced p-SMAD1/5/9 was increased by PDK4 overexpression, but was reduced by PDK4 silencing. PDK4 interacts with p-SMAD1/5/9 and regulates the sclerostin promoter. These findings suggest that PDK4 can increase the osteogenic potential of BMP9 by enhancing Wnt/ß-catenin signaling via the downregulation of sclerostin. PDK4 may be an effective target to strengthen BMP9-induced osteogenesis.


Asunto(s)
Factor 2 de Diferenciación de Crecimiento , Células Madre Mesenquimatosas , Osteogénesis , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Vía de Señalización Wnt , Animales , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Diferenciación Celular , Factor 2 de Diferenciación de Crecimiento/genética , Factor 2 de Diferenciación de Crecimiento/metabolismo , Células Madre Mesenquimatosas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo
11.
Oxid Med Cell Longev ; 2023: 3563663, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778210

RESUMEN

Studies reported the positive and negative osteogenic effects of MEG3 in mesenchymal stem cells (MSCs). This study aims at clarifying the osteogenic potential of MEG3 and the underlying mechanism. Bone morphogenetic protein 9- (BMP9-) transfected MSCs were recruited as an osteogenic model in vitro, and ectopic bone formation were used in vivo to explore the effect of MEG3 on osteogenesis. We found that overexpression of MEG3 facilitated BMP9-induced osteogenic markers, ALP activities, and matrix mineralization. However, knockdown of MEG3 attenuated BMP9-induced osteogenic markers. MEG3 increased the phosphorylation of GSK-3ß and the protein level of ß-catenin. Pyruvate dehydrogenase kinase 4 (PDK4) can also combine with GSK-3ß and increase the latter phosphorylation. Moreover, MEG3 increased the mRNA level of PDK4. The ceRNA analysis showed that MEG3 may regulate the expression of PDK4 via microRNA 532-5p (miR-532-5p). The MEG3-enhanced GSK-3ß/ß-catenin axis can be attenuated by miR-532-5p, and miR-532-5p inhibitor partly rescued endogenous PDK4 and MEG3-mediated expression of PDK4. MEG3 may potentiate PDK4 and GSK-3ß/ß-catenin by inhibiting miR-532-5p.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Glucógeno Sintasa Quinasa 3 beta/genética , Diferenciación Celular/fisiología , ARN Largo no Codificante/genética , beta Catenina/genética , beta Catenina/metabolismo , Osteogénesis , MicroARNs/genética , MicroARNs/metabolismo , Células Cultivadas
12.
Tissue Eng Regen Med ; 20(5): 705-723, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37010733

RESUMEN

BACKGROUND: All-trans retinoic acid (ATRA) promotes the osteogenic differentiation induced by bone morphogenetic protein 9 (BMP9), but the intrinsic relationship between BMP9 and ATRA keeps unknown. Herein, we investigated the effect of Cyp26b1, a critical enzyme of ATRA degradation, on the BMP9-induced osteogenic differentiation in mesenchymal stem cells (MSCs), and unveiled possible mechanism through which BMP9 regulates the expression of Cyp26b1. METHODS: ATRA content was detected with ELISA and HPLC-MS/MS. PCR, Western blot, and histochemical staining were used to assay the osteogenic markers. Fetal limbs culture, cranial defect repair model, and micro-computed tomographic were used to evaluate the quality of bone formation. IP and ChIP assay were used to explore possible mechanism. RESULTS: We found that the protein level of Cyp26b1 was increased with age, whereas the ATRA content decreased. The osteogenic markers induced by BMP9 were increased by inhibiting or silencing Cyp26b1 but reduced by exogenous Cyp26b1. The BMP9-induced bone formation was enhanced by inhibiting Cyp26b1. The cranial defect repair was promoted by BMP9, which was strengthened by silencing Cyp26b1 and reduced by exogenous Cyp26b1. Mechanically, Cyp26b1 was reduced by BMP9, which was enhanced by activating Wnt/ß-catenin, and reduced by inhibiting this pathway. ß-catenin interacts with Smad1/5/9, and both were recruited at the promoter of Cyp26b1. CONCLUSIONS: Our findings suggested the BMP9-induced osteoblastic differentiation was mediated by activating retinoic acid signalling, viadown-regulating Cyp26b1. Meanwhile, Cyp26b1 may be a novel potential therapeutic target for the treatment of bone-related diseases or accelerating bone-tissue engineering.


Asunto(s)
Factor 2 de Diferenciación de Crecimiento , Células Madre Mesenquimatosas , Vía de Señalización Wnt , beta Catenina/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Espectrometría de Masas en Tándem , Tretinoina/farmacología
13.
Stem Cells Int ; 2023: 5915988, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36698376

RESUMEN

Mesenchymal stem cells (MSCs) can self-renew and differentiate into multiple lineages, making MSC transplantation a promising option for bone regeneration. Both matricellular proteins and growth factors play an important role in regulating stem cell fate. In this study, we investigated the effects of matricellular protein SMOC2 (secreted modular calcium-binding protein 2) on bone morphogenetic protein 9 (BMP9) in mouse embryonic fibroblasts (MEFs) and revealed a possible molecular mechanism underlying this process. We found that SMOC2 was detectable in MEFs and that exogenous SMOC2 expression potentiated BMP9-induced osteogenic markers, matrix mineralization, and ectopic bone formation, whereas SMOC2 knockdown inhibited these effects. BMP9 increased the levels of p-FAK and p-AKT, which were either enhanced or reduced by SMOC2 and FAK silencing, respectively. BMP9-induced osteogenic markers were increased by SMOC2, and this increase was partially abolished by silencing FAK or LY290042. Furthermore, we found that general transcription factor 2I (GTF2I) was enriched at the promoter region of SMOC2 and that integrin ß1 interacted with SMOC2 in BMP9-treated MEFs. Our findings demonstrate that SMOC2 can promote BMP9-induced osteogenic differentiation by enhancing the FAK/PI3K/AKT pathway, which may be triggered by facilitating the interaction between SMOC2 and integrin ß1.

14.
Front Oncol ; 12: 822756, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211414

RESUMEN

BACKGROUND: Early identification of nasopharyngeal carcinoma (NPC) patients with high risk of failure to induction chemotherapy (IC) would facilitate prompt individualized treatment decisions and thus reduce toxicity and improve overall survival rate. This study aims to investigate the value of amide proton transfer (APT) imaging in predicting short-term response of NPC to IC and its potential correlation with well-established prognosis-related clinical characteristics. METHODS AND MATERIALS: A total of 80 pathologically confirmed NPC patients receiving pre-treatment APT imaging at 3T were retrospectively enrolled. Using asymmetry analysis, APT maps were calculated with mean (APTmean), 90th percentile (APT90) of APT signals in manually segmented NPC measured. APT values were compared among groups with different histopathological subtypes, clinical stages (namely, T, M, N, and overall stages), EBV-related indices (EBV-DNA), or responses to induction chemotherapy, using Mann-Whitney U test or Kruskal-Wallis H test. RESULTS: NPC showed significantly higher APTmean than normal nasopharyngeal tissues (1.81 ± 0.62% vs.1.32 ± 0.56%, P <0.001). APT signals showed no significant difference between undifferentiated and differentiated NPC subtypes groups, different EBV-DNA groups, or among T, N, M stages and overall clinical stages of II, III, IVA and IVB (all P >0.05). Similarly, baseline APT-related parameters did not differ significantly among different treatment response groups after IC, no matter if evaluated with RECIST criteria or sum volumetric regression ratio (SVRR) (all P >0.05). CONCLUSION: NPC showed significantly stronger APT effect than normal nasopharyngeal tissue, facilitating NPC lesion detection and early identification. However, stationary baseline APT values exhibited no significant correlation with histologic subtypes, clinical stages and EBV-related indices, and showed limited value to predict short-term treatment response to IC.

15.
Comput Biol Med ; 149: 105952, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36029750

RESUMEN

Dual-energy computed tomography (CT) can be used for material decomposition, allowing for the precise quantitative mapping of body substances; this has a wide range of clinical applications, including disease diagnosis, treatment response evaluation and prognosis prediction. However, dual-energy CT has not yet become the mainstream technique in most clinical settings due to its limited accessibility. To fully take advantage of material quantification, researchers have attempted to use deep learning to generate material decomposition maps from conventional single-energy CT images, mainly by synthesizing another single-energy CT image from a conventional single-energy CT image to form a dual-energy CT image first and then generate material decomposition maps. This is not a straightforward process, and it potentially introduces many inaccuracies after multiple steps. In this work, we proposed a generative adversarial network (GAN) framework as the base and improved its generator; this approach combines convolutional neural networks (CNNs) and a transformer module to directly generate material decomposition maps from conventional single-energy CT images. Our model pays attention to both local and global information. Then, we compared our method with 6 competitive deep learning methods on water (calcium) and calcium (water) substrate density image datasets. The average PSNR, SSIM, MAE, and RMSE of the generated and ground truth of the water (calcium) substrate density images were 32.7207, 0.9685, 0.0323, and 0.0555, respectively. Furthermore, the average PSNR, SSIM, MAE, and RMSE of the generated and ground truth of the calcium (water) substrate density images were 30.2823, 0.9449, 0.0652, and 0.0715, respectively. Our model achieved better performance and stronger stability than competing approaches.


Asunto(s)
Calcio , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X/métodos , Agua
16.
Phys Med Biol ; 66(14)2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34077922

RESUMEN

To reduce overall patient radiation exposure in some clinical scenarios (since cancer patients need frequent follow-ups), noncontrast CT is not used in some institutions. However, although less desirable, noncontrast CT could provide additional important information. In this article, we propose a deep subtraction residual network based on adjacency content transfer to reconstruct noncontrast CT from contrast CT and maintain image quality comparable to that of a CT scan originally acquired without contrast. To address the slight structural dissimilarity of the paired CT images (noncontrast CT and contrast CT) due to involuntary physiological motion, we introduce a contrastive loss network derived from the adjacency content-transfer strategy. We evaluate the results of various similarity metrics (MSE, SSIM, NRMSE, PSNR, MAE) and the fitting curve (HU distribution) of the output mapping to estimate the reconstruction performance of the algorithm. To build the model, we randomly select a total of 15,405 CT paired images (noncontrast CT and contrast-enhanced CT) for training and 10,270 CT paired images for testing. The proposed algorithm preserves the robust structures from the contrast-enhanced CT scans and learns the noncontrast attenuation pattern from the noncontrast CT scans. During the evaluation, the deep subtraction residual network achieves higher MSE, MAE, NRMSE, and PSNR scores (by 30%) than those of the baseline models (BEGAN, CycleGAN, Pixel2Pixel) and better simulates the HU curve of noncontrast CT attenuation. After validation based on an analysis of the experimental results, we can report that the noncontrast CT images reconstructed by our proposed algorithm not only preserve the high-quality structures from the contrast-enhanced CT images, but also mimic the CT attenuation of the originally acquired noncontrast CT images.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Algoritmos , Humanos , Tomografía Computarizada por Rayos X
17.
Front Endocrinol (Lausanne) ; 12: 815245, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095774

RESUMEN

Osteoporosis is a common systemic bone disease caused by the imbalance between osteogenic activity and osteoclastic activity. Aged women are at higher risk of osteoporosis, partly because of estrogen deficiency. However, the underlying mechanism of how estrogen deficiency affects osteoclast activity has not yet been well elucidated. In this study, GSE2208 and GSE56815 datasets were downloaded from GEO database with 25 PreH BMD women and 25 PostL BMD women in total. The RRA algorithm determined 38 downregulated DEGs and 30 upregulated DEGs. Through GO analysis, we found that downregulated DEGs were mainly enriched in myeloid cell differentiation, cytokine-related functions while upregulated DEGs enriched in immune-related biological processes; pathways like Notch signaling and MAPK activation were found in KEGG/Rectome pathway database; a PPI network which contains 66 nodes and 91 edges was constructed and three Modules were obtained by Mcode; Correlation analysis helped us to find highly correlated genes in each module. Moreover, three hub genes FOS, PTPN6, and CTSD were captured by Cytohubba. Finally, the hub genes were further confirmed in blood monocytes of ovariectomy (OVX) rats by real-time PCR assay. In conclusion, the integrative bioinformatics analysis and real-time PCR analysis were utilized to offer fresh light into the role of monocytes in premenopausal osteoporosis and identified FOS, PTPN6, and CTSD as potential biomarkers for postmenopausal osteoporosis.


Asunto(s)
Osteoporosis Posmenopáusica , Osteoporosis , Anciano , Animales , Biología Computacional , Femenino , Perfilación de la Expresión Génica , Humanos , Monocitos , Osteoporosis/genética , Osteoporosis Posmenopáusica/genética , Ratas
18.
Stem Cell Res Ther ; 12(1): 291, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001245

RESUMEN

BACKGROUND: Glucocorticoid-induced osteoporosis (GIOP) is the most common secondary osteoporosis. Patients with GIOP are susceptible to fractures and the subsequent delayed bone union or nonunion. Thus, effective drugs and targets need to be explored. In this regard, the present study aims to reveal the possible mechanism of the anti-GIOP effect of all-trans retinoic acid (ATRA). METHODS: Bone morphogenetic protein 9 (BMP9)-transfected mesenchymal stem cells (MSCs) were used as an in vitro osteogenic model to deduce the relationship between ATRA and dexamethasone (DEX). The osteogenic markers runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and osteopontin were detected using real-time quantitative polymerase chain reaction, Western blot, and immunofluorescent staining assay. ALP activities and matrix mineralization were evaluated using ALP staining and Alizarin Red S staining assay, respectively. The novel genes associated with ATRA and DEX were detected using RNA sequencing (RNA-seq). The binding of the protein-DNA complex was validated using chromatin immunoprecipitation (ChIP) assay. Rat GIOP models were constructed using intraperitoneal injection of dexamethasone at a dose of 1 mg/kg, while ATRA intragastric administration was applied to prevent and treat GIOP. These effects were evaluated based on the serum detection of the osteogenic markers osteocalcin and tartrate-resistant acid phosphatase 5b, histological staining, and micro-computed tomography analysis. RESULTS: ATRA enhanced BMP9-induced ALP, RUNX2 expressions, ALP activities, and matrix mineralization in mouse embryonic fibroblasts as well as C3H10T1/2 and C2C12 cells, while a high concentration of DEX attenuated these markers. When DEX was combined with ATRA, the latter reversed DEX-inhibited ALP activities and osteogenic markers. In vivo analysis showed that ATRA reversed DEX-inhibited bone volume, bone trabecular number, and thickness. During the reversal process of ATRA, the expression of retinoic acid receptor beta (RARß) was elevated. RARß inhibitor Le135 partly blocked the reversal effect of ATRA. Meanwhile, RNA-seq demonstrated that serine protease inhibitor, clade A, member 3N (Serpina3n) was remarkably upregulated by DEX but downregulated when combined with ATRA. Overexpression of Serpina3n attenuated ATRA-promoted osteogenic differentiation, whereas knockdown of Serpina3n blocked DEX-inhibited osteogenic differentiation. Furthermore, ChIP assay revealed that RARß can regulate the expression of Serpina3n. CONCLUSION: ATRA can reverse DEX-inhibited osteogenic differentiation both in vitro and in vivo, which may be closely related to the downregulation of DEX-promoted Serpina3n. Hence, ATRA may be viewed as a novel therapeutic agent, and Serpina3n may act as a new target for GIOP.


Asunto(s)
Células Madre Mesenquimatosas , Serpinas , Proteínas de Fase Aguda , Animales , Diferenciación Celular , Células Cultivadas , Dexametasona/farmacología , Fibroblastos , Humanos , Ratones , Osteogénesis , Ratas , Tretinoina/farmacología , Microtomografía por Rayos X
19.
Aging (Albany NY) ; 13(8): 11336-11351, 2021 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-33833129

RESUMEN

This study investigated the effects of transforming growth factor-ß1 (TGF-ß1) and cyclooxygenase-2 (COX-2) on bone morphogenetic protein 9 (BMP9) in mesenchymal stem cells (MSCs). We found that BMP9 increased mRNA levels of TGF-ß1 and COX-2 in C3H10T1/2 cells. BMP9-induced osteogenic markers were enhanced by TGF-ß1 and reduced by TGF-ßRI-specific inhibitor LY364947. BMP9 increased level of p-Smad2/3, which were either enhanced or reduced by COX-2 and its inhibitor NS398. BMP9-induced osteogenic markers were decreased by NS398 and it was partially reversed by TGF-ß1. COX-2 increased BMP9-induced osteogenic marker levels, which almost abolished by LY364947. BMP9-induced bone formation was enhanced by TGF-ß1 but reduced by silencing TGF-ß1 or COX-2. BMP9's osteogenic ability was inhibited by silencing COX-2 but partially reversed by TGF-ß1. TGF-ß1 and COX-2 enhanced activation of p38 signaling, which was induced by BMP9 and reduced by LY364947. The ability of TGF-ß1 to increase the BMP9-induced osteogenic markers was reduced by p38-specific inhibitor, while BMP9-induced TGF-ß1 expression was reduced by NS398, but enhanced by COX-2. Furthermore, CREB interacted with Smad1/5/8 to regulate TGF-ß1 expression in MSCs. These findings suggest that COX-2 overexpression leads to increase BMP9's osteogenic ability, resulting from TGF-ß1 upregulation which then activates p38 signaling in MSCs.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Línea Celular , Femenino , Técnicas de Silenciamiento del Gen , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Modelos Animales , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Aging (Albany NY) ; 12(21): 21220-21235, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159018

RESUMEN

In this study, we studied the effect and possible mechanism of TGF-ß1 on vascular calcification. We found that the serum levels of TGF-ß1 and cycloxygenase-2 (COX-2) were significantly increased in patients with chronic kidney disease. Phosphate up regulated TGF-ß1 in vascular smooth muscle cells (VSMCs). TGF-ß1 decreased the markers of VSMCs, but increased osteogenic markers and calcification in aortic segments. The phosphate-induced osteogenic markers were reduced by the TGFßR I inhibitor (LY364947), which also attenuated the potential of phosphate to reduce VSMC markers in VSMCs. Both phosphate and TGF-ß1 increased the protein level of ß-catenin, which was partially mitigated by LY364947. TGF-ß1 decreased sclerostin, and exogenous sclerostin decreased the mineralization induced by TGF-ß1. LY364947 reduced the phosphate and TGF-ß1 induced COX-2. Meanwhile, the effects of TGF-ß1 on osteogenic markers, ß-catenin, and sclerostin, were partially reversed by the COX-2 inhibitor. Mechanistically, we found that p-Smad2/3 and p-CREB were both enriched at the promoter regions of sclerostin and ß-catenin. TGF-ß1 and COX-2 were significantly elevated in serum and aorta of rats undergoing renal failure. Therapeutic administration of meloxicam effectively ameliorated the renal lesion. Our results suggested that COX-2 may mediate the effect of TGF-ß1 on vascular calcification through down-regulating sclerostin in VMSCs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Calcinosis/metabolismo , Ciclooxigenasa 2/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Insuficiencia Renal/metabolismo , Insuficiencia Renal/patología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Biomarcadores/sangre , Células Cultivadas , Ciclooxigenasa 2/sangre , Células HEK293 , Humanos , Masculino , Ratas Sprague-Dawley , Insuficiencia Renal/sangre , Factor de Crecimiento Transformador beta1/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA