Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Planta ; 248(1): 117-137, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29616395

RESUMEN

MAIN CONCLUSION: TaGF14b enhances tolerance to multiple stresses through ABA signaling pathway by altering physiological and biochemical processes, including ROS-scavenging system, stomatal closure, compatible osmolytes, and stress-related gene expressions in tobaccos. The 14-3-3 proteins are involved in plant growth, development, and in responding to abiotic stresses. However, the precise functions of 14-3-3s in responding to drought and salt stresses remained unclear, especially in wheat. In this study, a 14-3-3 gene from wheat, designated TaGF14b, was cloned and characterized. TaGF14b was upregulated by polyethylene glycol 6000, sodium chloride, hydrogen peroxide, and abscisic acid (ABA) treatments. Ectopic expression of TaGF14b in tobacco conferred enhanced tolerance to drought and salt stresses. Transgenic tobaccos had longer root, better growth status, and higher relative water content, survival rate, photosynthetic rate, and water use efficiency than control plants under drought and salt stresses. The contribution of TaGF14b to drought and salt tolerance relies on the regulations of ABA biosynthesis and ABA signaling, as well as stomatal closure and stress-related gene expressions. Moreover, TaGF14b expression could significantly enhance the reactive oxygen species (ROS) scavenging system to ameliorate oxidative damage to cells. In addition, TaGF14b increased tolerance to osmotic stress evoked by drought and salinity through modifying water conservation and compatible osmolytes in plants. In conclusion, TaGF14b enhances tolerance to multiple abiotic stresses through the ABA signaling pathway in transgenic tobaccos by altering physiological and biochemical processes.


Asunto(s)
Proteínas 14-3-3/genética , Triticum/genética , Proteínas 14-3-3/fisiología , Deshidratación , Genes de Plantas/genética , Filogenia , Plantas Modificadas Genéticamente/genética , Tolerancia a la Sal , Plantas Tolerantes a la Sal/genética , Alineación de Secuencia , Transducción de Señal , Nicotiana/genética , Nicotiana/fisiología , Triticum/fisiología
2.
Acta Biochim Biophys Sin (Shanghai) ; 50(2): 199-208, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29309501

RESUMEN

Calcineurin B-like protein (CBL), the Ca2+ sensor, and its interacting protein kinases (CIPKs) play essential roles in plants' response to stress. However, few studies have focused on the functions of CIPKs in low-temperature response. In the present study, BdCIPK31, a cold-responsive CIPK in Brachypodium distachyon, was found to participate in low-temperature response. Ectopic expression of BdCIPK31 conferred cold tolerance in transgenic tobaccos. Further analyses indicated that expression of BdCIPK31 improved ROS detoxication and omsoprotectant biosynthesis in transgenic plants under low-temperature treatment, suggesting that the BdCIPK31 functions positively in plant adaption to the cold-induced oxidative and osmotic stresses. Moreover, BdCIPK31 could upregulate the expressions of some representative stress-related genes under cold stress. In conclusion, these findings suggest that BdCIPK31 functions positively in plant cold response.


Asunto(s)
Adaptación Fisiológica/genética , Brachypodium/genética , Frío , Expresión Génica Ectópica , Nicotiana/genética , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Nicotiana/metabolismo
3.
BMC Plant Biol ; 14: 133, 2014 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-24884869

RESUMEN

BACKGROUND: In plants, calcium-dependent protein kinases (CDPKs) are involved in tolerance to abiotic stresses and in plant seed development. However, the functions of only a few rice CDPKs have been clarified. At present, it is unclear whether CDPKs also play a role in regulating spikelet fertility. RESULTS: We cloned and characterized the rice CDPK gene, OsCPK9. OsCPK9 transcription was induced by abscisic acid (ABA), PEG6000, and NaCl treatments. The results of OsCPK9 overexpression (OsCPK9-OX) and OsCPK9 RNA interference (OsCPK9-RNAi) analyses revealed that OsCPK9 plays a positive role in drought stress tolerance and spikelet fertility. Physiological analyses revealed that OsCPK9 improves drought stress tolerance by enhancing stomatal closure and by improving the osmotic adjustment ability of the plant. It also improves pollen viability, thereby increasing spikelet fertility. In OsCPK9-OX plants, shoot and root elongation showed enhanced sensitivity to ABA, compared with that of wild-type. Overexpression and RNA interference of OsCPK9 affected the transcript levels of ABA- and stress-responsive genes. CONCLUSIONS: Our results demonstrated that OsCPK9 is a positive regulator of abiotic stress tolerance, spikelet fertility, and ABA sensitivity.


Asunto(s)
Adaptación Fisiológica , Sequías , Oryza/enzimología , Oryza/fisiología , Proteínas Quinasas/metabolismo , Estrés Fisiológico , Ácido Abscísico/farmacología , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Deshidratación , Fertilidad/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Oryza/anatomía & histología , Oryza/genética , Ósmosis/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente , Polen/efectos de los fármacos , Polen/crecimiento & desarrollo , Prolina/metabolismo , Interferencia de ARN/efectos de los fármacos , Solubilidad , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
4.
Physiol Plant ; 149(3): 367-77, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23534344

RESUMEN

Calcineurin B-like protein-interacting protein kinases (CIPKs) are components of Ca(2+) signaling in responses to abiotic stresses. In this work, the full-length cDNA of a novel CIPK gene (TaCIPK14) was isolated from wheat and was found to have significant sequence similarity to OsCIPK14/15. Subcellular localization assay revealed the presence of TaCIPK14 throughout the cell. qRT-PCR analysis showed that TaCIPK14 was upregulated under cold conditions or when treated with salt, PEG or exogenous stresses related signaling molecules including ABA, ethylene and H2 O2 . Transgenic tobaccos overexpressing TaCIPK14 exhibited higher contents of chlorophyll and sugar, higher catalase activity, while decreased amounts of H2 O2 and malondialdehyde, and lesser ion leakage under cold and salt stresses. In addition, overexpression also increased seed germination rate, root elongation and decreased Na(+) content in the transgenic lines under salt stress. Higher expression of stress-related genes was observed in lines overexpressing TaCIPK14 compared to controls under stress conditions. In summary, these results suggested that TaCIPK14 is an abiotic stress-responsive gene in plants.


Asunto(s)
Aclimatación/genética , Nicotiana/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Tolerancia a la Sal/genética , Triticum/genética , Metabolismo de los Hidratos de Carbono , Catalasa/metabolismo , Clorofila/metabolismo , Frío , Sequías , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente/genética , Sodio/metabolismo , Estrés Fisiológico , Nicotiana/toxicidad , Triticum/enzimología , Triticum/fisiología
5.
Plant Physiol Biochem ; 203: 108034, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37738865

RESUMEN

Drought stress is one of the most impactful abiotic stresses to global wheat production. Therefore, identifying key regulators such as the calcineurin B-like protein interacting protein kinase (CIPK) in the signaling cascades known to coordinate developmental cues and environmental stimuli represents a useful approach to improve drought tolerance. However, functional studies have been very limited partly due to the difficulties in prioritizing candidate genes from the large TaCIPK family. To address this issue, we demonstrate a straight-forward strategy by analyzing gene expression patterns in response to phytohormones or stresses and identified TaCIPK19 as a new regulator to improve drought tolerance. The effects of TaCIPK19 on drought tolerance were evaluated in both tobacco and wheat through transgenic approach. Ectopic expression of TaCIPK19 in tobacco greatly improves drought tolerance with enhanced ABA biosynthesis/signaling and ROS scavenging capacity. TaCIPK19 overexpression in wheat also confers the drought tolerance at both seedling and mature stages with enhanced ROS scavenging capacity. Additionally, potential CBL partners interacting with TaCIPK19 were investigated. Collectively, our finding exemplifies a straight-forward approach to facilitate reverse genetics related to abiotic stress improvement and demonstrates TaCIPK19 as a new candidate gene to improve ROS scavenging capacity and drought tolerance, which is useful for genetic improvement and breeding application in wheat.

6.
Plant Physiol Biochem ; 192: 243-251, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272191

RESUMEN

Potassium (K) is one of the most essential macronutrients for plants. However, K+ is deficient in some cultivated soils. Hence, improving the efficiencies of K+ uptake and utilization is important for agricultural production. Ca2+ signaling pathways play an important role in regulation of K+ acquisition. In the present study, BdCIPK31, a Calcineurin B-like protein interacting protein kinase (CIPK) from Brachypodium distachyon, was found to be a potential positive regulator in plant response to low K+ stress. The expression of BdCIPK31 was responsive to K+-deficiency, and overexpression of BdCIPK31 conferred enhanced tolerance to low K+ stress in transgenic tobaccos. Furthermore, BdCIPK31 was demonstrated to promote the K+ uptake in root, and could maintain normal root growth under K+-deficiency conditions. Additionally, BdCIPK31 functioned in scavenging excess reactive oxygen species (ROS), reduced oxidative damage caused by low K+ stress. Collectively, our study indicates that BdCIPK31 is a vital regulatory component in K+-acquisition system in plants.

7.
Front Plant Sci ; 9: 326, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29599791

RESUMEN

Microelement contents and metabolism are vitally important for cereal plant growth and development as well as end-use properties. While minerals phytotoxicity harms plants, microelement deficiency also affects human health. Genetic engineering provides a promising way to solve these problems. As plants vary in abilities to uptake, transport, and accumulate minerals, and the key enzymes acting on that process is primarily presented in this review. Subsequently, microelement function and biosafety assessment of transgenic cereal plants have become a key issue to be addressed. Progress in genetic engineering of cereal plants has been made with the introduction of quality, high-yield, and resistant genes since the first transgenic rice, corn, and wheat were born in 1988, 1990, and 1992, respectively. As the biosafety issue of transgenic cereal plants has now risen to be a top concern, many studies on transgenic biosafety have been carried out. Transgenic cereal biosafety issues mainly include two subjects, environmental friendliness and end-use safety. Different levels of gene confirmation, genomics, proteomics, metabolomics and nutritiomics, absorption, metabolism, and function have been investigated. Also, the different levels of microelement contents have been measured in transgenic plants. Based on the motivation of the requested biosafety, systematic designs, and analysis of transgenic cereal are also presented in this review paper.

8.
Front Plant Sci ; 9: 2003, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30693013

RESUMEN

Sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members play crucial roles in plant abiotic stress response. However, the precise mechanism underlying the function of SnRKs has not been thoroughly elucidated in plants. In this research, a novel SnRK2 gene, TaSnRK2.9 was cloned and characterized from common wheat. The expression of TaSnRK2.9 was upregulated by polyethylene glycol (PEG), NaCl, H2O2, abscisic acid (ABA), methyl jasmonate (MeJA), and ethrel treatments. TaSnRK2.9 was mainly expressed in wheat young root, stamen, pistil, and lemma. Overexpressing TaSnRK2.9 in transgenic tobacco enhanced plants' tolerance to drought and salt stresses both in young seedlings and mature plants with improved survival rate, seed germination rate, and root length. Physiological analyses suggest that TaSnRK2.9 improved antioxidant system such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione (GSH) to reduce the H2O2 content under drought or salt stress. Additionally, TaSnRK2.9 overexpression plants had elevated ABA content, implying that the function of TaSnRK2.9 may be ABA-dependent. Moreover, TaSnRK2.9 increased the expression of some ROS-related, ABA-related, and stress-response genes under osmotic or salt treatment. TaSnRK2.9 could interact with NtABF2 in yeast two-hybrid assay, and increased the expression of NtABF2 under mannitol or NaCl treatment in transgenic tobacco plants. In conclusion, overexpression of TaSnRK2.9 in tobacco conferred plants tolerance to drought and salt stresses through enhanced ROS scavenging ability, ABA-dependent signal transduction, and specific SnRK-ABF interaction.

9.
Front Plant Sci ; 8: 1374, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848578

RESUMEN

MYB transcription factors play important roles in plant responses to biotic and abiotic stress. In this study, TaODORANT1, a R2R3-MYB gene, was cloned from wheat (Triticum aestivum L.). TaODORANT1 was localized in the nucleus and functioned as a transcriptional activator. TaODORANT1 was up-regulated in wheat under PEG6000, NaCl, ABA, and H2O2 treatments. TaODORANT1-overexpressing transgenic tobacco plants exhibited higher relative water content and lower water loss rate under drought stress, as well as lower Na+ accumulation in leaves under salt stress. The transgenic plants showed higher CAT activity but lower ion leakage, H2O2 and malondialdehyde contents under drought and salt stresses. Besides, the transgenic plants also exhibited higher SOD activity under drought stress. Our results also revealed that TaODORANT1 overexpression up-regulated the expression of several ROS- and stress-related genes in response to both drought and salt stresses, thus enhancing transgenic tobacco plants tolerance. Our studies demonstrate that TaODORANT1 positively regulates plant tolerance to drought and salt stresses.

10.
Front Plant Sci ; 8: 1184, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28736568

RESUMEN

Calcineurin B-like protein interacting protein kinases (CIPKs) are vital elements in plant abiotic stress signaling pathways. However, the functional mechanism of CIPKs has not been understood clearly, especially in Brachypodium distachyon, a new monocot model plant. In this study, BdCIPK31, a CIPK gene from B. distachyon was characterized. BdCIPK31 was downregulated by polyethylene glycol, NaCl, H2O2, and abscisic acid (ABA) treatments. Transgenic tobacco plants overexpressing BdCIPK31 presented improved drought and salt tolerance, and displayed hypersensitive response to exogenous ABA. Further investigations revealed that BdCIPK31 functioned positively in ABA-mediated stomatal closure, and transgenic tobacco exhibited reduced water loss under dehydration conditions compared with the controls. BdCIPK31 also affected Na+/K+ homeostasis and root K+ loss, which contributed to maintain intracellular ion homeostasis under salt conditions. Moreover, the reactive oxygen species scavenging system and osmolyte accumulation were enhanced by BdCIPK31 overexpression, which were conducive for alleviating oxidative and osmotic damages. Additionally, overexpression of BdCIPK31 could elevate several stress-associated gene expressions under stress conditions. In conclusion, BdCIPK31 functions positively to drought and salt stress through ABA signaling pathway. Overexpressing BdCIPK31 functions in stomatal closure, ion homeostasis, ROS scavenging, osmolyte biosynthesis, and transcriptional regulation of stress-related genes.

11.
Front Plant Sci ; 8: 264, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28293246

RESUMEN

The phytohormone abscisic acid (ABA) is essential in plant responding to biotic and abiotic stresses. Although ABA signaling model is well established in Arabidopsis, ABA receptor PYL family and clade A PP2C subfamily are not yet characterized in monocot model plant Brachypodium distachyon. In this study, we identified 12 PYLs and 8 clade A PP2Cs from B. distachyon genome and successfully cloned 12 PYLs and 7 clade A PP2Cs. Bioinformatic and expression analyses showed that most of the identified genes respond to several signal molecules and abiotic stresses. Protein-protein interaction analysis revealed that many BdPYLs and BdPP2CAs participate in the classic ABA-PYL-PP2C-SnRK2 signaling pathway. A clade A PP2C, designated BdPP2CA6, interacted with BdPYL11 in the absence of ABA and localized in nucleus. Most clade A PP2C members from Arabidopsis showed negatively regulation in ABA signaling pathway, whereas BdPP2CA6-overexpression transgenic Arabidopsis showed ABA hypersensitive phenotype, resulting in enhanced stomatal closure and salinity tolerance. Our results indicate that BdPP2CA6 positively regulates ABA and stress signal pathway in transgenic Arabidopsis plant seedlings.

12.
Front Plant Sci ; 8: 340, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28348575

RESUMEN

Plant 14-3-3 proteins are involved in diverse biological processes, but for the model monocotyledonous species, Brachypodium distachyon, their roles in abiotic stress tolerance are not well understood. In this study, a total of eight Bd14-3-3 genes were identified from B. distachyon and these were designated respectively as BdGF14a-BdGF14g. The qRT-PCR analyses of 3-month-old plants of B. distachyon showed that these genes were all expressed in the stems, leaves, and spikelets. By contrast, most of the plants had relatively lower transcriptional levels in their roots, except for the BdGF14g gene. The different expression profiles of the Bd14-3-3s under various stress treatments, and the diverse interaction patterns between Bd14-3-3s and BdAREB/ABFs, suggested that these gene products probably had a range of functions in the stress responses. The NaCl-induced Bd14-3-3 gene, BdGF14d, was selected for overexpression in tobacco. BdGF14d was found to be localized throughout the cell and it conferred enhanced tolerance to salt in the transgenic plants. Lowered contents of malondialdehyde, H2O2, and Na+, and lower relative electronic conductance (Rec%), yet greater activities of catalase and peroxidase, were observed in the overexpressing plants. Higher photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency were measured in the transgenic lines. Following abscisic acid (ABA) or NaCl treatment, stomatal aperture in leaves of the BdGF14d-overexpression plants was significantly lower than in leaves of the wild type (WT) controls. The stress-related marker genes involved in the ABA signaling pathway, the reactive oxygen species (ROS)-scavenging system, and the ion transporters were all up-regulated in the BdGF14d-overexpressing plants as compared with WT. Taken together, these results demonstrate that the Bd14-3-3 genes play important roles in abiotic stress tolerance. The ABA signaling pathway, the ROS-scavenging system, and ion transporters were all involved in enhancing the tolerance to salt stress in the BdGF14d-overexpression plants.

13.
Plant Sci ; 265: 112-123, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29223332

RESUMEN

MYB transcription factors are involved in the regulation of plant development and response to biotic and abiotic stress. In this study, TaMyb1D, a novel subgroup 4 gene of the R2R3-MYB subfamily, was cloned from wheat (Triticum aestivum L.). TaMyb1D was localized in the nucleus and functioned as a transcriptional repressor. The overexpression of TaMyb1D in tobacco (Nicotiana tabacum) plants repressed the expression of genes related to phenylpropanoid metabolism and down-regulated the accumulation of lignin in stems and flavonoids in leaves. These changes affected plant development under normal conditions. The expression of TaMyb1D was ubiquitous and up-regulated by PEG6000 and H2O2 treatments in wheat. TaMyb1D-overexpressing transgenic tobacco plants exhibited higher relative water content and lower water loss rate during drought stress, as well as higher chlorophyll content in leaves during oxidative stress. The transgenic plants showed a lower leakage of ions as well as reduced malondialdehyde and H2O2 levels during conditions of drought and oxidative stresses. In addition, TaMyb1D up-regulated the expression levels of ROS- and stress-related genes in response to drought stress. Therefore, the overexpression of TaMyb1D enhanced tolerance to drought and oxidative stresses in tobacco plants. Our study demonstrates that TaMyb1D functions as a negative regulator of phenylpropanoid metabolism and a positive regulator of plant tolerance to drought and oxidative stresses.


Asunto(s)
Sequías , Nicotiana/genética , Estrés Oxidativo/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Triticum/genética , Secuencia de Aminoácidos , Flavonoides/biosíntesis , Lignina/biosíntesis , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Alineación de Secuencia , Nicotiana/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Triticum/metabolismo
14.
PLoS One ; 8(7): e69881, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922838

RESUMEN

Calcineurin B-like protein-interacting protein kinases (CIPKs) have been found to be responsive to abiotic stress. However, their precise functions and the related molecular mechanisms in abiotic stress tolerance are not completely understood, especially in wheat. In the present study, TaCIPK29 was identified as a new member of CIPK gene family in wheat. TaCIPK29 transcript increased after NaCl, cold, methyl viologen (MV), abscisic acid (ABA) and ethylene treatments. Over-expression of TaCIPK29 in tobacco resulted in increased salt tolerance, which was demonstrated by higher germination rates, longer root lengths and better growth status of transgenic tobacco plants compared to controls when both were treated with salt stress. Physiological measurements indicated that transgenic tobacco seedlings retained high K(+)/Na(+) ratios and Ca(2+) content by up-regulating some transporter genes expression and also possessed lower H2O2 levels and reduced membrane injury by increasing the expression and activities of catalase (CAT) and peroxidase (POD) under salt stress. Moreover, transgenic lines conferred tolerance to oxidative stress by increasing the activity and expression of CAT. Finally, TaCIPK29 was located throughout cells and it preferentially interacted with TaCBL2, TaCBL3, NtCBL2, NtCBL3 and NtCAT1. Taken together, our results showed that TaCIPK29 functions as a positive factor under salt stress and is involved in regulating cations and reactive oxygen species (ROS) homeostasis.


Asunto(s)
Nicotiana/efectos de los fármacos , Nicotiana/metabolismo , Cloruro de Sodio/farmacología , Triticum/efectos de los fármacos , Triticum/metabolismo , Ácido Abscísico/farmacología , Catalasa/metabolismo , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Paraquat/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nicotiana/genética , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA