Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 15(12): 31843-58, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26694409

RESUMEN

Software-Defined Networking-based Mobile Networks (SDN-MNs) are considered the future of 5G mobile network architecture. With the evolving cyber-attack threat, security assessments need to be performed in the network management. Due to the distinctive features of SDN-MNs, such as their dynamic nature and complexity, traditional network security assessment methodologies cannot be applied directly to SDN-MNs, and a novel security assessment methodology is needed. In this paper, an effective security assessment mechanism based on attack graphs and an Analytic Hierarchy Process (AHP) is proposed for SDN-MNs. Firstly, this paper discusses the security assessment problem of SDN-MNs and proposes a methodology using attack graphs and AHP. Secondly, to address the diversity and complexity of SDN-MNs, a novel attack graph definition and attack graph generation algorithm are proposed. In order to quantify security levels, the Node Minimal Effort (NME) is defined to quantify attack cost and derive system security levels based on NME. Thirdly, to calculate the NME of an attack graph that takes the dynamic factors of SDN-MN into consideration, we use AHP integrated with the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) as the methodology. Finally, we offer a case study to validate the proposed methodology. The case study and evaluation show the advantages of the proposed security assessment mechanism.

2.
Cancer Gene Ther ; 31(3): 410-419, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38135696

RESUMEN

A sphingolipid metabolite regulator, sphingosine kinase 1 (SPHK1), plays a critical role in the development of colorectal cancer (CRC). Studies have demonstrated that invasion and metastasis of CRC are promoted by SPHK1-driven autophagy. However, the exact mechanism of SPHK1 drives autophagy to promote tumor progression remains unclear. Here, immunohistochemical detection showed the expression of SPHK1 and tumor necrosis factor receptor-associated factor-6 (TRAF6) in human CRC tissues was stronger than in adjacent normal tissues, they were both associated with distance metastasis. It was discovered that knockdown of SPHK1 reduced the expression of TRAF6, inhibited autophagy, and inhibited the growth and metastasis of CRC cells in vitro. Moreover, the effects of SPHK1-downregulating were reversed by overexpression of TRAF6 in CRC cells transfected by double-gene. Overexpression of SPHK1 and TRAF6 promoted the expression of autophagy protein LC3 and Vimentin, while downregulated the expression of autophagy protein P62 and E-cadherin. The expression of autophagy-related ubiquitination protein ULK1 and Ubiquitin protein were significantly upregulated in TRAF6-overexpressed CRC cells. In addition, autophagy inhibitor 3-methyladenine (3MA) significantly inhibited the metastasis-promoting effect of SPHK1 and TRAF6, suppressed the expression of LC3 and Vimentin, and promoted the expression of P62 and E-cadherin, in CRC cells. Immunofluorescence staining showed SPHK1 and TRAF6 were co-localized in HT29 CRC cell membrane and cytoplasm. Immunoprecipitation detection showed SPHK1 was efficiently combined with the endogenous TRAF6, and the interaction was also detected reciprocally. Additionally, proteasome inhibitor MG132 treatment upregulated the expression of TRAF6 and the level of Ubiquitin protein, in SPHK1-downregulating CRC cells. These results reveal that SPHK1 potentiates CRC progression and metastasis via regulating autophagy mediated by TRAF6-induced ULK1 ubiquitination. SPHK1-TRAF6-ULK1 signaling axis is critical to the progression of CRC and provides a new strategy for the therapeutic control of CRC.


Asunto(s)
Neoplasias Colorrectales , Fosfotransferasas (Aceptor de Grupo Alcohol) , Factor 6 Asociado a Receptor de TNF , Humanos , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo , Vimentina
3.
Cancer Med ; 10(17): 6010-6021, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34268882

RESUMEN

Invasion and metastasis are the main causes of colorectal cancer (CRC)-related death. Accumulating evidence suggested that sphingosine kinase 1 (SphK1) promoted the metastasis of CRC and autophagy played an important role in SphK1 promoting the metastasis of malignancy. However, the mechanism by which SphK1-driven autophagy promotes invasion and metastasis in CRC remains to be clarified. In the present study, immunohistochemical detection showed the expression of SphK1 and paxillin was higher in human CRC tissues than those of normal colorectal mucosal tissues, they were both associated with TNM staging, lymphatic, and distance metastasis. In addition, study of in situ tumor transplantation model in nude mice showed that the suppression of SphK1 inhibited the growth of colonic orthotopic implantation tumors and the expression of paxillin, p-paxillin, LC3 in the tumor. So, SphK1 may promote CRC metastasis via inducing the expression of paxillin expression and its phosphorylation, in vivo. Furthermore, results of CCK8 assay, transwell and wound healing assays showed that SphK1 promoted the viability, invasion, and metastasis of CRC cells. Transmission electron microscopy detection showed that SphK1 is the key factor in autophagy induction in CRC cells. Moreover, western blot examination indicated that the expression of LC3Ⅱ/Ⅰ, paxillin, p-paxillin, MMP-2, and vimentin was enhanced in SphK1-overexpressed CRC cells and suppressed in SphK1 knockdown CRC cells, meanwhile, the expression of E-cadherin was suppressed in SphK1-overexpressed CRC cells and enhanced in SphK1 knockdown CRC cells. Suppression of autophagy by 3MA reversed the expression of paxillin and its phosphorylation in SphK1-overexpressed CRC cells, indicated that SphK1-driven autophagy induced the expression of paxillin and its phosphorylation in CRC cells. Together, these findings reveal that SphK1-driven autophagy may promote the invasion and metastasis of CRC via promoting the expression of focal adhesion paxillin and its phosphorylation.


Asunto(s)
Autofagia/genética , Adhesiones Focales/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Neoplasias Colorrectales/genética , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Metástasis de la Neoplasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA