Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(39): e2309822120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725651

RESUMEN

External control of chemical reactions in biological settings with spatial and temporal precision is a grand challenge for noninvasive diagnostic and therapeutic applications. While light is a conventional stimulus for remote chemical activation, its penetration is severely attenuated in tissues, which limits biological applicability. On the other hand, ultrasound is a biocompatible remote energy source that is highly penetrant and offers a wide range of functional tunability. Coupling ultrasound to the activation of specific chemical reactions under physiological conditions, however, remains a challenge. Here, we describe a synergistic platform that couples the selective mechanochemical activation of mechanophore-functionalized polymers with biocompatible focused ultrasound (FUS) by leveraging pressure-sensitive gas vesicles (GVs) as acousto-mechanical transducers. The power of this approach is illustrated through the mechanically triggered release of covalently bound fluorogenic and therapeutic cargo molecules from polymers containing a masked 2-furylcarbinol mechanophore. Molecular release occurs selectively in the presence of GVs upon exposure to FUS under physiological conditions. These results showcase the viability of this system for enabling remote control of specific mechanochemical reactions with spatiotemporal precision in biologically relevant settings and demonstrate the translational potential of polymer mechanochemistry.


Asunto(s)
Fuentes Generadoras de Energía , Polímeros , Transductores , Extremidad Superior
2.
J Org Chem ; 87(21): 13605-13614, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198127

RESUMEN

The preparation of halogenated benzene-1,2,3,4-tetracarboxylic diimide derivatives is challenging because of the possibility of competitive incorrect cyclizations and SNAr reactivity. Here, we demonstrate that bypassing traditional cyclic anhydrides and instead directly reacting dihalobenzene-1,2,3,4-tetracarboxylic acids with primary amines in acetic acid solvent successfully provides a range of desirable ortho-diimide products in good yields. Furthermore, we demonstrate that sterically challenging N-derivatizations can be readily achieved under microwave reactor conditions. The halogenated diimides described here are attractive building blocks for organic materials chemistry.

3.
Chemistry ; 27(48): 12284-12288, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34196059

RESUMEN

Ultra-electron-deficient azaacenes were synthesized via Buchwald-Hartwig coupling of ortho-diaminoarenes with chlorinated mellophanic diimide followed by oxidation of the intermediate N,N'-dihydro compounds with MnO2 or PbO2 . The resulting cata-annulated bisimide azaacenes have ultrahigh electron affinities with first reduction potentials as low as -0.35 V recorded for a tetraazapentacene. Attempts to prepare a tetrakis(dicarboximide)tetraazaheptacene resulted in the formation of a symmetric butterfly dimer.

4.
Chemistry ; 25(67): 15257-15261, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31609488

RESUMEN

This work describes the unexpected formation of an unusual phosphonium ylide when attempting the synthesis of bisphosphonium pyromellitic diimides. Spectroscopic and crystallographic characterization reveals that a combination of π-π and CH⋅⋅⋅O interactions leads to supramolecular homodimerization of the ylide both in solution and in the solid-state. Only strong acids are able to protonate the ylide, which is otherwise inert to Wittig and alkylation reactivity. Taken together, these observations indicate that this compound is one of the most highly stabilized phosphonium ylides discovered to date.

5.
J Org Chem ; 84(16): 10362-10370, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31317735

RESUMEN

This work describes a three-step chromatography-free protocol for the synthesis of a novel organic materials building block, dichlorinated mellophanic diimide (MDI), that is shown to undergo nucleophilic substitution with a variety of ortho disubstituted benzenes to yield a series of chromophores. Furthermore, 1,2,4,5-tetrasubstituted benzenes can be used to synthesize tetraimide heteropentacene derivatives endcapped by MDI motifs. The fine-tuning effects of heteroatom identity were investigated by UV-vis and fluorescence spectroscopy, cyclic and differential pulse voltammetries, and density functional theory calculations. Oxidation of diamino MDI derivatives yields di- and tetraimide functionalized azaacenes with significantly lowered LUMO levels (down to -4.49 eV), narrowed band gaps (down to 1.81 eV), and high molar absorptivities (up to 84,000 M-1 cm-1).

6.
ACS Polym Au ; 3(2): 202-208, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37065719

RESUMEN

During the past two decades, our understanding of mechanochemical reactivity has advanced considerably. Nevertheless, an incomplete knowledge of structure-activity relationships and the principles that govern mechanochemical transformations limits molecular design. The experimental development of mechanophores has thus benefited from simple computational tools like CoGEF, from which quantitative metrics like rupture force can be extracted to estimate reactivity. Furan-maleimide (FM) and anthracene-maleimide (AM) Diels-Alder adducts are widely studied mechanophores that undergo retro-Diels-Alder reactions upon mechanical activation in polymers. Despite possessing significantly different thermal stability, similar rupture forces predicted by CoGEF calculations suggest that these compounds exhibit similar mechanochemical reactivity. Here, we directly probe the relative mechanochemical reactivity of FM and AM adducts through competitive activation experiments. Ultrasound-induced mechanochemical activation of bis-adduct mechanophores comprising covalently tethered FM and AM subunits reveals pronounced selectivity-as high as ∼13:1-for reaction of the FM adduct compared to the AM adduct. Computational models provide insight into the greater reactivity of the FM mechanophore, indicating a more efficient mechanochemical coupling for the FM adduct compared to the AM adduct. The methodology employed here to directly interrogate the relative reactivity of two different mechanophores using a tethered bis-adduct configuration may be useful for other systems where more common sonication-based approaches are limited by poor sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA