Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 35(9): 3566-3584, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37378590

RESUMEN

The detection of microbial infections by plants induces the rapid formation of immune receptor complexes at the plasma membrane. However, how this process is controlled to ensure proper immune signaling remains largely unknown. Here, we found that the Nicotiana benthamiana membrane-localized leucine-rich repeat receptor-like kinase BAK1-INTERACTING RLK 2 (NbBIR2) constitutively associates with BRI1-ASSOCIATED RECEPTOR KINASE 1 (NbBAK1) in vivo and in vitro and promotes complex formation with pattern recognition receptors. In addition, NbBIR2 is targeted by 2 RING-type ubiquitin E3 ligases, SNC1-INFLUENCING PLANT E3 LIGASE REVERSE 2a (NbSNIPER2a) and NbSNIPER2b, for ubiquitination and subsequent degradation in planta. NbSNIPER2a and NbSNIPER2b interact with NbBIR2 in vivo and in vitro and are released from NbBIR2 upon treatment with different microbial patterns. Furthermore, accumulation of NbBIR2 in response to microbial patterns is tightly associated with NbBAK1 abundance in N. benthamiana. NbBAK1 acts as a modular protein that stabilizes NbBIR2 by competing with NbSNIPER2a or NbSNIPER2b for association with NbBIR2. Similar to NbBAK1, NbBIR2 positively regulates pattern-triggered immunity and resistance to bacterial and oomycete pathogens in N. benthamiana, whereas NbSNIPER2a and NbSNIPER2b have the opposite effect. Together, these results reveal a feedback regulatory mechanism employed by plants to tailor pattern-triggered immune signaling.


Asunto(s)
Proteínas de Arabidopsis , Nicotiana , Nicotiana/metabolismo , Reconocimiento de Inmunidad Innata , Proteínas , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Inmunidad de la Planta/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Enfermedades de las Plantas/microbiología
2.
Phytother Res ; 38(3): 1462-1477, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246696

RESUMEN

Reducing mitochondrial oxidative stress has become an important strategy to prevent neuronal death in ischemic stroke. Previous studies have shown that 20(R)-ginsenoside Rg3 can significantly improve behavioral abnormalities, reduce infarct size, and decrease the number of apoptotic neurons in cerebral ischemia/reperfusion injury rats. However, it remains unclear whether 20(R)-ginsenoside Rg3 can inhibit mitochondrial oxidative stress in ischemic stroke and the potential molecular mechanism. In this study, we found that 20(R)-ginsenoside Rg3 notably inhibited mitochondrial oxidative stress in middle cerebral artery occlusion/reperfusion (MCAO/R) rats and maintained the stability of mitochondrial structure and function. Treatment with 20(R)-ginsenoside Rg3 also decreased the levels of mitochondrial fission proteins (Drp1 and Fis1) and increased the levels of fusion proteins (Opa1, Mfn1, and Mfn2) in MCAO/R rats. Furthermore, we found that 20(R)-ginsenoside Rg3 promoted nuclear aggregation of nuclear factor erythroid2-related factor 2 (Nrf2) but did not affect Kelch-like ECH-associated protein-1 (Keap1), resulting in the downstream expression of antioxidants. In in vitro oxygen-glucose deprivation/reperfusion stroke models, the results of PC12 cells treated with 20(R)-ginsenoside Rg3 were consistent with animal experiments. After transfection with Nrf2 short interfering RNA (siRNA), the protective effect of 20(R)-ginsenoside Rg3 on PC12 cells was reversed. In conclusion, the inhibition of mitochondrial oxidative stress plays a vital position in the anti-cerebral ischemia-reperfusion injury of 20(R)-ginsenoside Rg3, and its neuroprotective mechanism is related to the activation of the nuclear factor erythroid2-related factor 2/heme oxygenase 1 signaling pathway.


Asunto(s)
Isquemia Encefálica , Ginsenósidos , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Animales , Ratas Sprague-Dawley , Estrés Oxidativo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Fármacos Neuroprotectores/farmacología , Transducción de Señal , Daño por Reperfusión/prevención & control , Infarto de la Arteria Cerebral Media
3.
Chem Biodivers ; 21(8): e202400934, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38898600

RESUMEN

Ginseng saponins (ginsenosides), bioactive compounds derived from ginseng, are widely used natural products with potent therapeutic properties in the management of various ailments, particularly tumors, cardiovascular and cerebrovascular diseases, and immune system disorders. Autophagy, a highly regulated and multistep process involving the breakdown of impaired organelles and macromolecules by autophagolysosomes and autophagy-related genes (ATGs), has gained increasing attention as a potential target for ginsenoside-mediated disease treatment. This review aims to provide a comprehensive overview of recent research advances in the understanding of autophagy-related signaling pathways and the role of ginsenoside-mediated autophagy regulation. By delving into the intricate autophagy signaling pathways underpinning the pharmacological properties of ginsenosides, we highlight their therapeutic potential in addressing various conditions. Our findings serve as a comprehensive reference for further investigation into the medicinal properties of ginseng or ginseng-related products.


Asunto(s)
Autofagia , Panax , Saponinas , Transducción de Señal , Panax/química , Panax/metabolismo , Autofagia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Humanos , Saponinas/farmacología , Saponinas/química , Ginsenósidos/farmacología , Ginsenósidos/química , Animales
4.
Comput Commun ; 206: 172-177, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37197297

RESUMEN

In recent years, coronavirus disease 2019 (COVID-19) has been a severe issue the world faces. Emergency rescue networks concerning the distribution of relief materials have gained extensive attention to tackle COVID-19 and related emergency issues. However, it is challenging to establish reliable and efficient emergency rescue networks due to information asymmetry and lack of trust among different rescue stations. In this work, we propose blockchain-based emergency rescue networks to track every transaction of the relief materials reliably and make decisions to deliver relief materials efficiently. More specifically, we propose a hybrid blockchain architecture that employs on-chain data verification to authenticate data records and off-chain data storage to reduce storage overhead. Furthermore, we propose a fireworks algorithm to efficiently calculate the optimal allocation strategies for relief materials. The algorithm provides chaotic random screening and node request guarantee techniques with good convergence. The simulation results show that integrating blockchain technology and the fireworks algorithm can significantly improve relief materials' operation efficiency and distribution quality.

5.
BMC Vet Res ; 18(1): 90, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255906

RESUMEN

BACKGROUND: Infectious bronchitis virus (IBV) leads to huge economic losses in the poultry industry worldwide. The high levels of mutations of IBV render vaccines partially protective. Therefore, it is urgent to explore an effective antiviral drug or agent. The present study aimed to investigate the in vivo anti-IBV activity of a mixture of plant essential oils (PEO) of cinnamaldehyde (CA) and glycerol monolaurate (GML), designated as Jin-Jing-Zi. RESULTS: The antiviral effects were evaluated by clinical signs, viral loads, immune organ indices, antibody levels, and cytokine levels. The infection rates in the PEO-M (middle dose) and PEO-H (high dose) groups were significantly lower than those in the prevention, positive drug, and PEO-L (low dose) groups. The cure rates in the PEO-M and PEO-H groups were significantly higher than those in the prevention, positive drug, and PEO-L groups, and the PEO-M group had the highest cure rate of 92.31%. The symptom scores and IBV mRNA expression levels were significantly reduced in the PEO-M group. PEO significantly improved the immune organ indices and IBV-specific antibody titers of infected chickens. The anti-inflammatory factor levels of IL-4 and IFN-γ in the PEO-M group maintained high concentrations for a long time. The IL-6 levels in the PEO-M group were lower than those in prevention, positive drug, and PEO-L groups. CONCLUSION: The PEO had remarkable inhibition against IBV and the PEO acts by inhibiting virus multiplication and promoting immune function, suggesting that the PEO has great potential as a novel anti-IBV agent for inhibiting IBV infection.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Aceites Volátiles , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Pollos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/prevención & control , Vacunas Virales/uso terapéutico
6.
BMC Pediatr ; 22(1): 347, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710383

RESUMEN

BACKGROUND: Overweight and obesity are major public health crises among children and adolescents and contribute to a significant economic burden. We aimed to investigate the relationship between breastfeeding duration and overweight and obesity in children and adolescents in Qingdao, China in 2017. METHODS: This study conducted a survey with 10,753 students (5370 boys and 5383 girls) aged 6 to 16 years from the Shibei District of Qingdao, China in 2017. Anthropometric measurements were taken by well-trained personnel and self-completed questionnaires were used to collect data from students. A variety of statistical methods were used in this study, including univariate and multivariate analyses, as well as linear and nonlinear regression models. RESULTS: The prevalence of overweight and obesity was 15.45% and 19.76%, respectively. There was a significant negative correlation between breastfeeding duration and BMI in children and adolescents (ß = -0.025, 95% CI: -0.033, -0.005, P < 0.01). Among boys, the BMI in children and adolescences of those who have been breastfed for more than 12 months was significantly lower than that of others whose breastfeeding duration was less than 12 months (ß = -0.440, 95%CI -0.655, -0.224, P < 0.01). Breastfeeding has a particularly positive effect on the prevalence of obesity in boys aged 9 to 11 years (OR = 0.978, 95% CI: 0.958,0.999, P < 0.05). CONCLUSION: Breastfeeding can significantly reduce the prevalence of overweight and obesity among children and adolescents aged 6 to 16 years. Those who were breastfed for more than 12 months had a lower risk of developing overweight and obesity, especially boys between the ages of 9 and 11.


Asunto(s)
Sobrepeso , Obesidad Infantil , Adolescente , Índice de Masa Corporal , Lactancia Materna , Niño , China/epidemiología , Estudios Transversales , Femenino , Humanos , Masculino , Sobrepeso/epidemiología , Sobrepeso/etiología , Obesidad Infantil/epidemiología , Obesidad Infantil/etiología , Prevalencia
7.
J Clin Lab Anal ; 36(5): e24415, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35421276

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is characterised by high malignancy, metastasis and recurrence, but the specific mechanism that drives these outcomes is unclear. Recent studies have shown that long noncoding RNAs (lncRNAs) can regulate the proliferation and apoptosis of hepatic cells. METHODS: We searched for lncRNAs and microRNAs (miRNAs), which can regulate IGF1 expression, through a bioinformatics website, and predicted that lncRNA taurine-upregulated gene 1 (TUG1) would have multiple targets for miR-1-3p binding, meaning that lncRNA TUG1 played an adsorption role. A double luciferase assay was used to verify the targeting relationship between lncRNA TUG1 and miR-1-3p. Western blotting and qPCR were used to verify the targeting relationship between miR-1-3p and IGF1, and qPCR was used to verify the regulatory relationship between the lncRNA TUG1-miR-1-3p-IGF1 axis. CCK-8 was used to detect the growth activity of miRNA-transfected L-O2 cells, and flow cytometry was used to detect cell cycle changes and apoptosis. RESULT: The proliferation cycle of L-O2 cells transfected with miR-1-3p mimics was significantly slowed. Flow cytometry showed that the proliferation of L-O2 cells was slowed, and the apoptosis rate was increased. In contrast, when L-O2 cells were transfected with miR-1-3p inhibitor, the expression of IGF1 was significantly upregulated, and the cell proliferation cycle was significantly accelerated. Flow cytometry showed that the cell proliferation rate was accelerated, and the apoptosis rate was reduced. CONCLUSION: LncRNA TUG1 can adsorb miR-1-3p as a competitive endogenous RNA (ceRNA) to promote the expression of IGF1 and promote cell proliferation in hepatic carcinogenesis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Apoptosis/genética , Carcinogénesis , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Neoplasias Hepáticas/genética , MicroARNs/genética , ARN Largo no Codificante/genética
8.
J Integr Plant Biol ; 63(12): 2031-2037, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34850567

RESUMEN

Although the genetic basis for endosperm development in maize (Zea mays) has been well studied, the mechanism for coordinating grain filling with increasing kernel size remains elusive. Here, we report that increased kernel size was selected during modern breeding and identify a novel DELLA-like transcriptional regulator, ZmGRAS11, which positively regulates kernel size and kernel weight in maize. We find that Opaque2, a core transcription factor for zein protein and starch accumulation, transactivates the expression of ZmGRAS11. Our data suggest that the Opaque2-ZmGRAS11 module mediates synergistic endosperm enlargement with grain filling.


Asunto(s)
Zea mays , Zeína , Endospermo/genética , Endospermo/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Zeína/genética , Zeína/metabolismo
9.
Appl Microbiol Biotechnol ; 104(24): 10493-10502, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33151367

RESUMEN

Indigoidine is a dark-blue natural pigment with application prospect and synthesized from glutamine (Gln) by series of indigoidine synthetases (IndCs). Indigoidine production can be improved by enhancing Gln pool via supplementing Gln directly or converting metabolism glutamate (Glu) to Gln by glutamine synthetase (GlnA). But, Gln is expensive, and excess Gln inhibits indigoidine production of the recombinant strain. Supplementing Glu instead of Gln may improve the productive and economic efficiency of indigoidine, but the local activities and positions of the indigoidine pathway enzymes GlnA, Sc-IndC, and the helper protein of Sc-IndC (IndB) should be well arranged. We identified the Streptomyces chromofuscus ATCC 49982 derived IndC (Sc-IndC) as an more efficient IndC compared to other IndCs applied for constructing indigoidine-producting strains, and designed series of protein scaffold complexes with architectures of PDZ, SH3, and GBD domains (PxSyG1) to arrange the pathway enzymes. The strain recruiting GlnA, Sc-IndC, and IndB on the PDZ, SH3, and GBD domains of scaffold P1S2G1, respectively, was the most efficient. In the strain, the GlnA supplied sufficient local Gln for Sc-IndC from Glu, and the generated Gln was immediately consumed by Sc-IndC to relieve cell growth inhibition caused by Gln. The optimum Glu concentration (6 g/L) for the strain was higher than those of the strains recruiting Sc-IndC on the GBD domain, which was away from the PDZ domain recruiting GlnA. The highest titer of indigoidine was 12 g/L, which was two folds of the control without scaffold (5.8 g/L). The titer is 5 g/L higher than the control without Glu supplemented (6.9 g/L), meaning that 97% of the supplemented Glu was transformed into indigoidine. The batch fermentation with the optimum strain in a 5-L reactor achieved an indigoidine titer of 14 g/L in 60 h. To our knowledge, this was the most efficient indigoidine productivity achieved so far. The optimization strategies by protein scaffold should be applicative to other pathways with complex substrate demands. KEY POINTS: •Protein scaffold systems were designed to arrange the indigoidine synthetic pathway. •The scaffold system improved supplement of Gln for indigoidine production from Glu. •The inhibition caused by excess Gln was relieved by proper designed scaffold. •The yield and titer of indigoidine was improved by arranging the pathway enzymes. Graphical abstract.


Asunto(s)
Piperidonas , Streptomyces , Proteínas Bacterianas , Ácido Glutámico , Glutamina
11.
Anal Bioanal Chem ; 408(19): 5359-67, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27225174

RESUMEN

Identification of bioactive compounds directly from complex herbal extracts is a key issue in the study of Chinese herbs. The present study describes the establishment and application of a sensitive, efficient, and convenient method based on surface plasmon resonance (SPR) biosensors for screening active ingredients targeting tumor necrosis factor receptor type 1 (TNF-R1) from Chinese herbs. Concentration-adjusted herbal extracts were subjected to SPR binding assay, and a remarkable response signal was observed in Rheum officinale extract. Then, the TNF-R1-bound ingredients were recovered, enriched, and analyzed by UPLC-QTOF/MS. As a result, physcion-8-O-ß-D-monoglucoside (PMG) was identified as a bioactive compound, and the affinity constant of PMG to TNF-R1 was determined by SPR affinity analysis (K D = 376 nM). Pharmacological assays revealed that PMG inhibited TNF-α-induced cytotoxicity and apoptosis in L929 cells via TNF-R1. Although PMG was a trace component in the chemical constituents of the R. officinale extract, it had considerable anti-inflammatory activities. It was found for the first time that PMG was a ligand for TNF receptor from herbal medicines. The proposed SPR-based screening method may prove to be an effective solution to analyzing bioactive components of Chinese herbs and other complex drug systems. Graphical abstract Scheme of the method based on SPR biosensor for screening and recovering active ingredients from complex herbal extracts and UPLC-MS for identifying them. Scheme of the method based on SPR biosensor for screening and recovering active ingredients from complex herbal extracts and UPLC-MS for identifying them.


Asunto(s)
Técnicas Biosensibles/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Espectroscopía de Resonancia Magnética/instrumentación , Mapeo de Interacción de Proteínas/métodos , Receptores del Factor de Necrosis Tumoral/química , Resonancia por Plasmón de Superficie/instrumentación , Sitios de Unión , Técnicas Biosensibles/métodos , Descubrimiento de Drogas/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Extractos Vegetales/química , Plantas Medicinales/química , Unión Proteica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Water Sci Technol ; 74(7): 1744-1751, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27763355

RESUMEN

The adsorption behavior of pharmaceuticals and personal care product, Bisphenol-A (BPA), according to four coal-based and four wood-based granular activated carbons modified using outgassing treatment, acidic treatment or alkaline treatment was studied. The adsorption isotherm results indicated that carbon surface acidity played a very important role in the adsorption of BPA. It was found that increasing surface acidity would increase the hydrogen bonding effects and increase adsorption of BPA on activated carbon. The acidic modified sample (F600-A and OLC-A) represented the best adsorption capacity, and the equilibrium adsorption amounts reached 346.42 and 338.55 mg/g, respectively. Further, effects of surface charge and surface basicity were examined. It was found that the adsorbed amount of BPA decreased with the increase of surface charge. Finally, there appeared to be a significant oligomerization phenomenon with BPA molecules onto the surface of activated carbon. OLC and OLC-OG, which have higher micropore percentages, are very effective in hampering the oligomerization of BPA under oxic conditions.


Asunto(s)
Compuestos de Bencidrilo/química , Carbón Orgánico/química , Fenoles/química , Contaminantes Químicos del Agua/química , Adsorción , Carbón Mineral , Concentración de Iones de Hidrógeno , Madera
13.
Appl Microbiol Biotechnol ; 98(13): 6137-46, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24687747

RESUMEN

An Escherichia coli arsRp::luc-based biosensor was constructed to measure the bioavailability of arsenic (As) in soil. In previous induction experiments, it produced a linear response (R (2) = 0.96, P < 0.01) to As from 0.05 to 5 µmol/L after a 2-h incubation. Then, both chemical sequential extraction, Community Bureau of Reference recommended sequential extraction procedures (BCR-SEPs) and E. coli biosensor, were employed to assess the impact of different long-term fertilization regimes containing N, NP, NPK, M (manure), and NPK + M treatments on the bioavailability of arsenic (As) in soil. Per the BCR-SEPs analysis, the application of M and M + NPK led to a significant (P < 0.01) increase of exchangeable As (2-7 times and 2-5 times, respectively) and reducible As (1.5-2.5 times and 1.5-2.3 times, respectively) compared with the no fertilization treated soil (CK). In addition, direct contact assay of E. coli biosensor with soil particles also supported that bioavailable As in manure-fertilized (M and M + NPK) soil was significantly higher (P < 0.01) than that in CK soil (7 and 9 times, respectively). Organic carbon may be the major factor governing the increase of bioavailable As. More significantly, E. coli biosensor-determined As was only 18.46-85.17 % of exchangeable As and 20.68-90.1 % of reducible As based on BCR-SEPs. In conclusion, NKP fertilization was recommended as a more suitable regime in As-polluted soil especially with high As concentration, and this E. coli arsRp::luc-based biosensor was a more realistic approach in assessing the bioavailability of As in soil since it would not overrate the risk of As to the environment.


Asunto(s)
Arsénico/análisis , Técnicas Biosensibles/métodos , Técnicas de Química Analítica , Escherichia coli/efectos de los fármacos , Fertilizantes/estadística & datos numéricos , Contaminantes del Suelo/análisis , Suelo/química , Agricultura/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Luciferasas/análisis , Luciferasas/genética , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Transactivadores/efectos de los fármacos , Transactivadores/genética
14.
Cancer Rep (Hoboken) ; 7(8): e2153, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118232

RESUMEN

BACKGROUND: Integrin-Binding Sialoprotein (IBSP) has been implicated in tumor progression across various cancers. However, the specific role of IBSP in breast cancer remains underexplored. There is a need to investigate the mechanisms by which IBSP influences breast cancer progression and its potential as a therapeutic target. AIMS: This study aims to elucidate the role of IBSP in breast cancer, particularly its impact on tumor progression and its relationship with prognosis. We also seek to understand the underlying mechanisms, including the involvement of the BMP-SMAD signaling pathway, and to explore the potential of targeting IBSP for therapeutic interventions. METHODS AND RESULTS: Overexpression of IBSP in breast cancer cells led to increased migration and invasion, whereas IBSP interference reduced these behaviors, indicating its role in enhancing tumor progression. Differentially expressed genes were significantly enriched in the BMP-SMAD signaling pathway, a critical pathway for osteogenic differentiation. Transcription Factor Binding: Dual luciferase reporter assays demonstrated that SMAD4 specifically binds to the IBSP promoter, establishing a regulatory link between SMAD4 and IBSP expression. Silencing IBSP (si-IBSP) mitigated the effects of SMAD4-induced tumor proliferation, confirming that IBSP acts as a downstream target of SMAD4 in the BMP signaling pathway. CONCLUSION: Our study reveals that IBSP plays a significant role in breast cancer progression through the BMP-SMAD4 signaling pathway. Targeting IBSP could be a promising therapeutic strategy for breast cancer treatment. Further research into IBSP inhibitors may offer new avenues for improving treatment outcomes and managing breast cancer more effectively.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Proliferación Celular , Sialoproteína de Unión a Integrina , Transducción de Señal , Proteína Smad4 , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Femenino , Neoplasias Óseas/secundario , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/genética , Proteína Smad4/metabolismo , Proteína Smad4/genética , Sialoproteína de Unión a Integrina/metabolismo , Sialoproteína de Unión a Integrina/genética , Ratones , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Línea Celular Tumoral , Pronóstico , Ratones Desnudos
15.
Front Immunol ; 15: 1398990, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086489

RESUMEN

Background: More and more evidence supports the association between myocardial infarction (MI) and osteoarthritis (OA). The purpose of this study is to explore the shared biomarkers and pathogenesis of MI complicated with OA by systems biology. Methods: Gene expression profiles of MI and OA were downloaded from the Gene Expression Omnibus (GEO) database. The Weighted Gene Co-Expression Network Analysis (WGCNA) and differentially expressed genes (DEGs) analysis were used to identify the common DEGs. The shared genes related to diseases were screened by three public databases, and the protein-protein interaction (PPI) network was built. GO and KEGG enrichment analyses were performed on the two parts of the genes respectively. The hub genes were intersected and verified by Least absolute shrinkage and selection operator (LASSO) analysis, receiver operating characteristic (ROC) curves, and single-cell RNA sequencing analysis. Finally, the hub genes differentially expressed in primary cardiomyocytes and chondrocytes were verified by RT-qPCR. The immune cell infiltration analysis, subtypes analysis, and transcription factors (TFs) prediction were carried out. Results: In this study, 23 common DEGs were obtained by WGCNA and DEGs analysis. In addition, 199 common genes were acquired from three public databases by PPI. Inflammation and immunity may be the common pathogenic mechanisms, and the MAPK signaling pathway may play a key role in both disorders. DUSP1, FOS, and THBS1 were identified as shared biomarkers, which is entirely consistent with the results of single-cell RNA sequencing analysis, and furher confirmed by RT-qPCR. Immune infiltration analysis illustrated that many types of immune cells were closely associated with MI and OA. Two potential subtypes were identified in both datasets. Furthermore, FOXC1 may be the crucial TF, and the relationship of TFs-hub genes-immune cells was visualized by the Sankey diagram, which could help discover the pathogenesis between MI and OA. Conclusion: In summary, this study first revealed 3 (DUSP1, FOS, and THBS1) novel shared biomarkers and signaling pathways underlying both MI and OA. Additionally, immune cells and key TFs related to 3 hub genes were examined to further clarify the regulation mechanism. Our study provides new insights into shared molecular mechanisms between MI and OA.


Asunto(s)
Biomarcadores , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Infarto del Miocardio , Osteoartritis , Mapas de Interacción de Proteínas , Biología de Sistemas , Infarto del Miocardio/genética , Infarto del Miocardio/inmunología , Osteoartritis/genética , Osteoartritis/metabolismo , Humanos , Bases de Datos Genéticas , Transcriptoma , Condrocitos/metabolismo , Condrocitos/inmunología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Biología Computacional/métodos
16.
Eur J Pharmacol ; 981: 176893, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134295

RESUMEN

Alzheimer's disease (AD) is closely associated with the neurotoxic effects of amyloid-ß (Aß), leading to synaptic damage, neuronal loss and cognitive dysfunction. Previous in vitro studies have demonstrated the potential of corilagin to counteract Aß-induced oxidative stress, inflammatory injury, and ß-site amyloid precursor protein cleaving enzyme-1 (BACE1) activity in Aß production. However, the in vivo protective effects of corilagin on Alzheimer's disease remain unexplored. The purpose of this study was to investigate the protective effects of corilagin on APP/PS1 mice and the underlying mechanisms. The cognitive function of the mice was assessed by step-through passive avoidance and Morris water maze tests. Nissl staining was used to evaluate neuronal damage in the hippocampus. ELISA and Western blotting analyses were used to determine the associated protein expression. Transmission electron microscopy was utilized to observe the synaptic ultrastructure of hippocampal neurons. Golgi staining was applied to assess dendritic morphology and dendritic spine density in hippocampal pyramidal neurons. Immunohistochemistry and Western blotting were performed to examine the expression of synaptic-associated proteins. The results showed that corilagin improves learning and memory in APP/PS1 mice, reduces hippocampal neuron damage, inhibits BACE1 and reduces Aß generation. It also improves synaptic plasticity and the expression of synaptic-associated proteins. Corilagin effectively reduces Aß generation by inhibiting BACE1, ultimately reducing neuronal loss and enhancing synaptic plasticity to improve synaptic transmission. This study sheds light on the potential therapeutic role of corilagin in Alzheimer's disease.

17.
Exp Neurol ; 374: 114697, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38266765

RESUMEN

BACKGROUND: Stroke is one of the leading causes of death and long-term disability worldwide. Previous studies have found that corilagin has antioxidant, anti-inflammatory, anti-atherosclerotic and other pharmacological activities and has a protective effect against cardiac and cerebrovascular injury. OBJECTIVES: The aim of this study was to investigate the protective effects of corilagin against ischemic stroke and to elucidate the underlying molecular mechanisms using network pharmacology, molecular docking, and animal and cell experiments. METHODS: We investigated the potential of corilagin to ameliorate cerebral ischemia-reperfusion injury using in vivo rat middle cerebral artery occlusion/reperfusion (MCAO/R) and in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) models. RESULTS: Our results suggest that corilagin may exert its anti-ischemic stroke effect by interacting with 92 key targets, including apoptosis-associated proteins (Bcl-2, Bax, caspase-3) and PI3K/Akt signaling pathway-related proteins. In vivo and in vitro experiments showed that corilagin treatment improved neurological deficits, attenuated cerebral infarct volume, and mitigated neuronal damage in MCAO/R rats. Corilagin treatment also enhanced the survival of PC12 cells exposed to OGD/R, reduced the rate of LDH leakage, inhibited cell apoptosis, and activated the PI3K/Akt signaling pathway. Importantly, the effects of corilagin on the PI3K/Akt signaling pathway and apoptosis-associated proteins were reversed by the PI3K-specific inhibitor LY294002. CONCLUSIONS: These results indicate that the molecular mechanism of the anti-ischemic effect of corilagin involves inhibiting neuronal apoptosis and activating the PI3K/Akt signaling pathway. These findings provide a theoretical and experimental basis for the further development and application of corilagin as a potential anti-ischemic stroke agent.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Glucósidos , Taninos Hidrolizables , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Animales , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Farmacología en Red , Ratas Sprague-Dawley , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Daño por Reperfusión/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Lesiones Encefálicas/tratamiento farmacológico , Apoptosis
18.
Cells ; 13(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38891124

RESUMEN

Canine oral melanoma is the most prevalent malignant tumor in dogs and has a poor prognosis due to its high aggressiveness and high metastasis and recurrence rates. More research is needed into its treatment and to understand its pathogenic factors. In this study, we isolated a canine oral mucosal melanoma (COMM) cell line designated as COMM6605, which has now been stably passaged for more than 100 generations, with a successful monoclonal assay and a cell multiplication time of 22.2 h. G-banded karyotype analysis of the COMM6605 cell line revealed an abnormal chromosome count ranging from 45 to 74, with the identification of a double-armed chromosome as the characteristic marker chromosome of this cell line. The oral intralingual and dorsal subcutaneous implantation models of BALB/c-nu mice were successfully established; Melan-A (MLANA), S100 beta protein (S100ß), PNL2, tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2) were stably expressed positively in the canine oral tumor sections, tumor cell lines, and tumor sections of tumor-bearing mice. Sublines COMM6605-Luc-EGFP and COMM6605-Cherry were established through lentiviral transfection, with COMM6605-Luc-EGFP co-expressing firefly luciferase (Luc) and enhanced green fluorescent protein (EGFP) and COMM6605-Cherry expressing the Cherry fluorescent protein gene. The COMM6605-Luc-EGFP fluorescent cell subline was injected via the tail vein and caused lung and lymph node metastasis, as detected by mouse live imaging, which can be used as an animal model to simulate the latter steps of hematogenous spread during tumor metastasis. The canine oral melanoma cell line COMM6605 and two sublines isolated and characterized in this study can offer a valuable model for studying mucosal melanoma.


Asunto(s)
Melanoma , Mucosa Bucal , Neoplasias de la Boca , Animales , Perros , Melanoma/patología , Melanoma/genética , Melanoma/veterinaria , Neoplasias de la Boca/patología , Neoplasias de la Boca/genética , Neoplasias de la Boca/veterinaria , Línea Celular Tumoral , Mucosa Bucal/patología , Mucosa Bucal/metabolismo , Ratones , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Ratones Desnudos
19.
Front Public Health ; 12: 1396198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660366

RESUMEN

Objective: This study aims to explore the association between outdoor artificial light at night (ALAN) exposure and gestational diabetes mellitus (GDM). Methods: This study is a retrospective case-control study. According with quantiles, ALAN has been classified into three categories (Q1-Q3). GDM was diagnosed through oral glucose tolerance tests. Conditional logistic regression models were used to evaluate the association between ALAN exposure and GDM risk. The odds ratio (OR) with 95% confidence interval (CI) was used to assess the association. Restricted cubic spline analysis (RCS) was utilized to investigate the no liner association between ALAN and GDM. Results: A total of 5,720 participants were included, comprising 1,430 individuals with GDM and 4,290 matched controls. Pregnant women exposed to higher levels of ALAN during the first trimester exhibited an elevated risk of GDM compared to those with lower exposure levels (Q2 OR = 1.39, 95% CI 1.20-1.63, p < 0.001); (Q3 OR = 1.70, 95% CI 1.44-2.00, p < 0.001). Similarly, elevated ALAN exposure during the second trimester also conferred an increased risk of GDM (second trimester: Q2 OR = 1.70, 95% CI 1.45-1.98, p < 0.001; Q3 OR = 2.08, 95% CI 1.77-2.44, p < 0.001). RCS showed a nonlinear association between ALAN exposure and GDM risk in second trimester pregnancy, with a threshold value of 4.235. Conclusion: Outdoor ALAN exposure during pregnancy is associated with an increased risk of GDM.


Asunto(s)
Diabetes Gestacional , Humanos , Femenino , Diabetes Gestacional/etiología , Embarazo , Estudios de Casos y Controles , Adulto , Estudios Retrospectivos , Iluminación/efectos adversos , Factores de Riesgo , Prueba de Tolerancia a la Glucosa , China/epidemiología , Modelos Logísticos
20.
Int J Mol Sci ; 14(7): 14607-19, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23857057

RESUMEN

Many Gram-negative plant pathogenic bacteria employ a N-acylhomoserine lactone (AHL)-based quorum sensing (QS) system to regulate their virulence traits. A sustainable biocontrol strategy has been developed using quorum quenching (QQ) bacteria to interfere with QS and protect plants from pathogens. Here, the prevalence and the diversity of QQ strains inhabiting tobacco leaf surfaces were explored. A total of 1177 leaf-associated isolates were screened for their ability to disrupt AHL-mediated QS, using the biosensor Chromobacterium violaceum CV026. One hundred and sixty-eight strains (14%) are capable of interfering with AHL activity. Among these, 106 strains (63%) of the culturable quenchers can enzymatically degrade AHL molecules, while the remaining strains might use other QS inhibitors to interrupt the chemical communication. Moreover, almost 79% of the QQ strains capable of inactivating AHLs enzymatically have lactonase activity. Further phylogenetic analysis based on 16S rDNA revealed that the leaf-associated QQ bacteria can be classified as Bacillus sp., Acinetobacter sp., Lysinibacillus sp., Serratia sp., Pseudomonas sp., and Myroides sp. The naturally occurring diversity of bacterial quenchers might provide opportunities to use them as effective biocontrol reagents for suppressing plant pathogen in situ.


Asunto(s)
Chromobacterium/metabolismo , Nicotiana/microbiología , Percepción de Quorum/fisiología , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Chromobacterium/clasificación , Chromobacterium/aislamiento & purificación , Filogenia , Hojas de la Planta/microbiología , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA