Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Immunol ; 24(1): 53, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087217

RESUMEN

Malignant pleural effusion (MPE), which is a complex microenvironment that contains numerous immune and tumour signals, is common in lung cancer. Gene alterations, such as driver gene mutations, are believed to affect the components of tumour immunity in the microenvironment (TIME) of non-small-cell lung cancer. In this study, we have shown that pleural CD39 + CD8 + T cells are selectively elevated in lung adenocarcinoma (LUAD) with wild-type epidermal growth factor receptor (EGFRwt) compared to those with newly diagnosed mutant EGFR (EGFRmu). Furthermore, these CD39 + CD8 + T cells are more prevalent in MPE with acquired resistance to EGFR-tyrosine kinase inhibitors (AR-EGFR-TKIs). Our analysis reveals that pleural CD39 + CD8 + T cells exhibit an exhausted phenotype while still retaining cytolytic function. Additionally, they have a higher T cell receptor (TCR) repertoire clonality compared to CD39-CD8 + T cells, which is a unique characteristic of LUAD-related MPE. Further investigation has shown that TCR-Vß clonality tends to be more enhanced in pleural CD39 + CD8 + T cells from MPE with AR-EGFR-TKIs. In summary, we have identified a subset of CD8 + T cells expressing CD39 in MPE, which may potentially be tumour-reactive CD8 + T cells. This study provides new insights into the dynamic immune composition of the EGFRmu tumour microenvironment.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Derrame Pleural Maligno , Derrame Pleural , Humanos , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Derrame Pleural Maligno/genética , Derrame Pleural Maligno/metabolismo , Derrame Pleural Maligno/patología , Receptores ErbB/genética , Receptores de Antígenos de Linfocitos T , Microambiente Tumoral
2.
Immunol Lett ; 263: 61-69, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37805094

RESUMEN

Immune checkpoint blockade (ICB) has shown improvement in overall survival for lung cancer in clinical trials. However, monotherapies have limited efficacy in improving outcomes and benefit only a subset of patients. Combination therapies targeting multiple pathways can augment an immune response to improve survival further. Here, we demonstrate that combinatorial anti-PD-L1/cryoablation therapy generated a synergistic antitumor activity in the established lung cancer model. Importantly, it was observed that this favorable antitumor immune response comes predominantly from the PD-1+CD8+ T cells generated after the combination therapy, referred as improvement of IFN-γ production and mitochondrial metabolism, which resembled highly functional effectors CD8+ T cells. Notably, the cellular levels of mitochondrial reactive oxygen and mitochondria mass excessively coincided with alteration of IFN-γ secretion in PD-1+CD8+T cell subset. So far, anti-PD-L1/cryoablation therapy selectively derived the improvement of depolarized mitochondria in PD-1+CD8+T cell subset, subsequently rebuild the anti-tumor function of the exhausted CD8+ T cells. Collectively, there is considerable interest in anti-PD-L1 plus cryoablation combination therapy for patients with lung cancer, and defining the underlying mechanisms of the observed synergy.


Asunto(s)
Criocirugía , Neoplasias Pulmonares , Humanos , Ratones , Animales , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/metabolismo , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Linfocitos T CD8-positivos , Mitocondrias , Inmunoterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA