Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Prostaglandins Other Lipid Mediat ; 171: 106806, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185280

RESUMEN

Bacterial endophthalmitis is a blinding infectious disease typically acquired during ocular surgery. We previously reported significant alterations in retinal metabolism during Staphylococcus (S) aureus endophthalmitis. However, the changes in retinal lipid composition during endophthalmitis are unknown. Here, using a mouse model of S. aureus endophthalmitis and an untargeted lipidomic approach, we comprehensively analyzed temporal alterations in total lipids and oxylipin in retina. Our data showed a time-dependent increase in the levels of lipid classes, sphingolipids, glycerolipids, sterols, and non-esterified fatty acids, whereas levels of phospholipids decreased. Among lipid subclasses, phosphatidylcholine decreased over time. The oxylipin analysis revealed increased prostaglandin-E2, hydroxyeicosatetraenoic acids, docosahexaenoic acid, eicosapentaenoic acid, and α-linolenic acid. In-vitro studies using mouse bone marrow-derived macrophages showed increased lipid droplets and lipid-peroxide formation in response to S. aureus infection. Collectively, these findings suggest that S. aureus-infection alters the retinal lipid profile, which may contribute to the pathogenesis of bacterial endophthalmitis.


Asunto(s)
Endoftalmitis , Staphylococcus aureus , Humanos , Staphylococcus aureus/fisiología , Lipidómica , Oxilipinas , Endoftalmitis/microbiología , Endoftalmitis/patología , Retina/patología
2.
Diabetologia ; 64(7): 1674-1689, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33770194

RESUMEN

AIMS/HYPOTHESIS: Homo sapiens evolved under conditions of intermittent food availability and prolonged fasting between meals. Periods of fasting are important for recovery from meal-induced oxidative and metabolic stress, and tissue repair. Constant high energy-density food availability in present-day society contributes to the pathogenesis of chronic diseases, including diabetes and its complications, with intermittent fasting (IF) and energy restriction shown to improve metabolic health. We have previously demonstrated that IF prevents the development of diabetic retinopathy in a mouse model of type 2 diabetes (db/db); however the mechanisms of fasting-induced health benefits and fasting-induced risks for individuals with diabetes remain largely unknown. Sirtuin 1 (SIRT1), a nutrient-sensing deacetylase, is downregulated in diabetes. In this study, the effect of SIRT1 stimulation by IF, fasting-mimicking cell culture conditions (FMC) or pharmacological treatment using SRT1720 was evaluated on systemic and retinal metabolism, systemic and retinal inflammation and vascular and bone marrow damage. METHODS: The effects of IF were modelled in vivo using db/db mice and in vitro using bovine retinal endothelial cells or rat retinal neuroglial/precursor R28 cell line serum starved for 24 h. mRNA expression was analysed by quantitative PCR (qPCR). SIRT1 activity was measured via histone deacetylase activity assay. NR1H3 (also known as liver X receptor alpha [LXRα]) acetylation was measured via western blot analysis. RESULTS: IF increased Sirt1 mRNA expression in mouse liver and retina when compared with non-fasted animals. IF also increased SIRT1 activity eightfold in mouse retina while FMC increased SIRT1 activity and expression in retinal endothelial cells when compared with control. Sirt1 expression was also increased twofold in neuronal retina progenitor cells (R28) after FMC treatment. Moreover, FMC led to SIRT1-mediated LXRα deacetylation and subsequent 2.4-fold increase in activity, as measured by increased mRNA expression of the genes encoding ATP-binding cassette transporter (Abca1 and Abcg1). These changes were reduced when retinal endothelial cells expressing a constitutively acetylated LXRα mutant were tested. Increased SIRT1/LXR/ABC-mediated cholesterol export resulted in decreased retinal endothelial cell cholesterol levels. Direct activation of SIRT1 by SRT1720 in db/db mice led to a twofold reduction of diabetes-induced inflammation in the retina and improved diabetes-induced visual function impairment, as measured by electroretinogram and optokinetic response. In the bone marrow, there was prevention of diabetes-induced myeloidosis and decreased inflammatory cytokine expression. CONCLUSIONS/INTERPRETATION: Taken together, activation of SIRT1 signalling by IF or through pharmacological activation represents an effective therapeutic strategy that provides a mechanistic link between the advantageous effects associated with fasting regimens and prevention of microvascular and bone marrow dysfunction in diabetes.


Asunto(s)
Angiopatías Diabéticas/prevención & control , Ayuno/fisiología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Animales , Bovinos , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Células Cultivadas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/terapia , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/metabolismo , Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Hipoglucemiantes/farmacología , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ratas , Retina/efectos de los fármacos , Retina/patología , Neuronas Retinianas/efectos de los fármacos , Neuronas Retinianas/metabolismo , Neuronas Retinianas/patología , Vasos Retinianos/efectos de los fármacos , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirtuina 1/efectos de los fármacos , Sirtuina 1/genética , Sirtuina 1/metabolismo
3.
Physiol Genomics ; 52(6): 255-268, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32437232

RESUMEN

Precision medicine requires the translation of basic biological understanding to medical insights, mainly applied to characterization of each unique patient. In many clinical settings, this requires tools that can be broadly used to identify pathology and risks. Patients often present to the intensive care unit with broad phenotypes, including multiple organ dysfunction syndrome (MODS) resulting from infection, trauma, or other disease processes. Etiology and outcomes are unique to individuals, making it difficult to cohort patients with MODS, but presenting a prime target for testing/developing tools for precision medicine. Using multitime point whole blood (cellular/acellular) total transcriptomics in 27 patients, we highlight the promise of simultaneously mapping viral/bacterial load, cell composition, tissue damage biomarkers, balance between syndromic biology versus environmental response, and unique biological insights in each patient using a single platform measurement. Integration of a transcriptome workflow yielded unexpected insights into the complex interplay between host genetics and viral/bacterial specific mechanisms, highlighted by a unique case of virally induced genetics (VIG) within one of these 27 patients. The power of RNA-Seq to study unique patient biology while investigating environmental contributions can be a critical tool moving forward for translational sciences applied to precision medicine.


Asunto(s)
Infecciones por Coronavirus/genética , Infecciones por Coronavirus/virología , Perfilación de la Expresión Génica/métodos , Neumonía Viral/genética , Neumonía Viral/virología , Medicina de Precisión/métodos , COVID-19 , Humanos , Pandemias , Transcripción Genética , Carga Viral
4.
J Biol Chem ; 294(22): 8973-8990, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31010828

RESUMEN

Chronic, low-grade inflammation increases the risk for atherosclerosis, cancer, and autoimmunity in diseases such as obesity and diabetes. Levels of CD4+ T helper 17 (Th17) cells, which secrete interleukin 17A (IL-17A), are increased in obesity and contribute to the inflammatory milieu; however, the relationship between signaling events triggered by excess nutrient levels and IL-17A-mediated inflammation is unclear. Here, using cytokine, quantitative real-time PCR, immunoprecipitation, and ChIP assays, along with lipidomics and MS-based approaches, we show that increased levels of the nutrient-responsive, post-translational protein modification, O-GlcNAc, are present in naive CD4+ T cells from a diet-induced obesity murine model and that elevated O-GlcNAc levels increase IL-17A production. We also found that increased binding of the Th17 master transcription factor RAR-related orphan receptor γ t variant (RORγt) at the IL-17 gene promoter and enhancer, as well as significant alterations in the intracellular lipid microenvironment, elevates the production of ligands capable of increasing RORγt transcriptional activity. Importantly, the rate-limiting enzyme of fatty acid biosynthesis, acetyl-CoA carboxylase 1 (ACC1), is O-GlcNAcylated and necessary for production of these RORγt-activating ligands. Our results suggest that increased O-GlcNAcylation of cellular proteins may be a potential link between excess nutrient levels and pathological inflammation.


Asunto(s)
Ácidos Grasos/biosíntesis , Interleucina-17/metabolismo , Células Th17/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Acilación/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Ácidos Grasos/análisis , Femenino , Humanos , Interleucina-17/genética , Lipidómica/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Obesidad/metabolismo , Obesidad/patología , Regiones Promotoras Genéticas , Unión Proteica , Piranos/farmacología , Células Th17/citología , Tiazoles/farmacología , Activación Transcripcional/efectos de los fármacos
5.
Cytokine ; 133: 155147, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32492632

RESUMEN

Interferons (IFN) have been shown to alter lipid metabolism in immune and some non-hematopoietic cells and this affects host cell response to pathogens. In type 1 diabetes, IFNγ acts as a proinflammatory cytokine that, along with other cytokines, is released during pancreatic beta cell autoinflammation and contributes to immune response and beta cell dysfunction. The hypothesis tested herein is that IFN modifies beta cell lipid metabolism and this is associated with enhanced anti-viral response and beta cell stress. Treatment of INS-1 cells with IFNγ for 6 to 24 h led to a dynamic change in TAG and lipid droplet (LD) levels, with a decrease at 6 h and an increase at 24 h. The later accumulation of TAG was associated with increased de novo lipogenesis (DNL), and impaired mitochondrial fatty acid oxidation (FAO). Gene expression results suggested that IFNγ regulates lipolytic, lipogenic, LD and FAO genes in a temporal manner. The changes in lipid gene expression are dependent on the classical Janus kinase (JAK) pathway. Pretreatment with IFNγ robustly enhanced anti-viral gene expression induced by the viral mimetic polyinosinic: polycytidylic acid (PIC), and this potentiating effect of IFNγ was markedly attenuated by inhibitors of DNL. The IFNγ-induced accumulation of lipid, however, was insufficient to cause endoplasmic reticulum (ER) stress. These studies demonstrated a non-canonical effect of IFNγ in regulation of pancreatic beta cell lipid metabolism that is intimately linked with host cell defense and might alter cellular function early in the progression to type 1 diabetes.


Asunto(s)
Antivirales/inmunología , Células Secretoras de Insulina/inmunología , Interferón gamma/inmunología , Metabolismo de los Lípidos/inmunología , Animales , Células Cultivadas , Diabetes Mellitus Tipo 1/inmunología , Estrés del Retículo Endoplásmico/inmunología , Quinasas Janus/inmunología , Poli I-C/inmunología , Ratas
6.
Toxicol Appl Pharmacol ; 398: 115034, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32387183

RESUMEN

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent aryl hydrocarbon receptor (AhR) agonist that elicits a broad spectrum of dose-dependent hepatic effects including lipid accumulation, inflammation, and fibrosis. To determine the role of inflammatory lipid mediators in TCDD-mediated hepatotoxicity, eicosanoid metabolism was investigated. Female Sprague-Dawley (SD) rats were orally gavaged with sesame oil vehicle or 0.01-10 µg/kg TCDD every 4 days for 28 days. Hepatic RNA-Seq data was integrated with untargeted metabolomics of liver, serum, and urine, revealing dose-dependent changes in linoleic acid (LA) and arachidonic acid (AA) metabolism. TCDD also elicited dose-dependent differential gene expression associated with the cyclooxygenase, lipoxygenase, and cytochrome P450 epoxidation/hydroxylation pathways with corresponding changes in ω-6 (e.g. AA and LA) and ω-3 polyunsaturated fatty acids (PUFAs), as well as associated eicosanoid metabolites. Overall, TCDD increased the ratio of ω-6 to ω-3 PUFAs. Phospholipase A2 (Pla2g12a) was induced consistent with increased AA metabolism, while AA utilization by induced lipoxygenases Alox5 and Alox15 increased leukotrienes (LTs). More specifically, TCDD increased pro-inflammatory eicosanoids including leukotriene LTB4, and LTB3, known to recruit neutrophils to damaged tissue. Dose-response modeling suggests the cytochrome P450 hydroxylase/epoxygenase and lipoxygenase pathways are more sensitive to TCDD than the cyclooxygenase pathway. Hepatic AhR ChIP-Seq analysis found little enrichment within the regulatory regions of differentially expressed genes (DEGs) involved in eicosanoid biosynthesis, suggesting TCDD-elicited dysregulation of eicosanoid metabolism is a downstream effect of AhR activation. Overall, these results suggest alterations in eicosanoid metabolism may play a key role in TCDD-elicited hepatotoxicity associated with the progression of steatosis to steatohepatitis.


Asunto(s)
Eicosanoides/metabolismo , Ácidos Grasos Insaturados/metabolismo , Hígado/efectos de los fármacos , Dibenzodioxinas Policloradas/farmacología , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Grasos Omega-3/metabolismo , Hígado Graso/metabolismo , Femenino , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Hidrocarburo de Aril/metabolismo
7.
Int J Mol Sci ; 21(11)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481596

RESUMEN

Mitochondrial damage in the cells comprising inner (retinal endothelial cells) and outer (retinal pigment epithelium (RPE)) blood-retinal barriers (BRB) is known to precede the initial BRB breakdown and further histopathological abnormalities in diabetic retinopathy (DR). We previously demonstrated that activation of acid sphingomyelinase (ASM) is an important early event in the pathogenesis of DR, and recent studies have demonstrated that there is an intricate connection between ceramide and mitochondrial function. This study aimed to determine the role of ASM-dependent mitochondrial ceramide accumulation in diabetes-induced RPE cell damage. Mitochondria isolated from streptozotocin (STZ)-induced diabetic rat retinas (7 weeks duration) showed a 1.64 ± 0.29-fold increase in the ceramide-to-sphingomyelin ratio compared to controls. Conversely, the ceramide-to-sphingomyelin ratio was decreased in the mitochondria isolated from ASM-knockout mouse retinas compared to wild-type littermates, confirming the role of ASM in mitochondrial ceramide production. Cellular ceramide was elevated 2.67 ± 1.07-fold in RPE cells derived from diabetic donors compared to control donors, and these changes correlated with increased gene expression of IL-1ß, IL-6, and ASM. Treatment of RPE cells derived from control donors with high glucose resulted in elevated ASM, vascular endothelial growth factor (VEGF), and intercellular adhesion molecule 1 (ICAM-1) mRNA. RPE from diabetic donors showed fragmented mitochondria and a 2.68 ± 0.66-fold decreased respiratory control ratio (RCR). Treatment of immortalized cell in vision research (ARPE-19) cells with high glucose resulted in a 25% ± 1.6% decrease in citrate synthase activity at 72 h. Inhibition of ASM with desipramine (15 µM, 1 h daily) abolished the decreases in metabolic functional parameters. Our results are consistent with diabetes-induced increase in mitochondrial ceramide through an ASM-dependent pathway leading to impaired mitochondrial function in the RPE cells of the retina.


Asunto(s)
Ceramidas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Mitocondrias/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Barrera Hematorretinal , Citrato (si)-Sintasa/metabolismo , Desipramina/farmacología , Regulación de la Expresión Génica , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Retina/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielinas/metabolismo
8.
Int J Mol Sci ; 20(15)2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382484

RESUMEN

Arterial foam cells are central players of atherogenesis. Cholesterol acceptors, apolipoprotein A-I (apoA-I) and high-density lipoprotein (HDL), take up cholesterol and phospholipids effluxed from foam cells into the circulation. Due to the high abundance of cholesterol in foam cells, most previous studies focused on apoA-I/HDL-mediated free cholesterol (FC) transport. However, recent lipidomics of human atherosclerotic plaques also identified that oxidized sterols (oxysterols) and non-sterol lipid species accumulate as atherogenesis progresses. While it is known that these lipids regulate expression of pro-inflammatory genes linked to plaque instability, how cholesterol acceptors impact the foam cell lipidome, particularly oxysterols and non-sterol lipids, remains unexplored. Using lipidomics analyses, we found cholesterol acceptors remodel foam cell lipidomes. Lipid subclass analyses revealed various oxysterols, sphingomyelins, and ceramides, species uniquely enriched in human plaques were significantly reduced by cholesterol acceptors, especially by apoA-I. These results indicate that the function of lipid-poor apoA-I is not limited to the efflux of cholesterol and phospholipids but suggest that apoA-I serves as a major regulator of the foam cell lipidome and might play an important role in reducing multiple lipid species involved in the pathogenesis of atherosclerosis.


Asunto(s)
Colesterol/metabolismo , Células Espumosas/metabolismo , Placa Aterosclerótica/metabolismo , Animales , Apolipoproteína A-I/metabolismo , Aterosclerosis/metabolismo , Células Cultivadas , Humanos , Lipidómica , Lipoproteínas LDL/metabolismo , Masculino , Ratones Endogámicos C57BL , Oxiesteroles/metabolismo
9.
J Bacteriol ; 200(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29581406

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health. Consequently, much effort has focused on the development of new antimicrobials that target novel aspects of S. aureus physiology. Fatty acids are required to maintain cell viability, and bacteria synthesize fatty acids using the type II fatty acid synthesis (FASII) pathway. FASII is significantly different from human fatty acid synthesis, underscoring the therapeutic potential of inhibiting this pathway. However, many Gram-positive pathogens incorporate exogenous fatty acids, bypassing FASII inhibition and leaving the clinical potential of FASII inhibitors uncertain. Importantly, the source(s) of fatty acids available to pathogens within the host environment remains unclear. Fatty acids are transported throughout the body by lipoprotein particles in the form of triglycerides and esterified cholesterol. Thus, lipoproteins, such as low-density lipoprotein (LDL), represent a potentially rich source of exogenous fatty acids for S. aureus during infection. We sought to test the ability of LDLs to serve as a fatty acid source for S. aureus and show that cells cultured in the presence of human LDLs demonstrate increased tolerance to the FASII inhibitor triclosan. Using mass spectrometry, we observed that host-derived fatty acids present in the LDLs are incorporated into the staphylococcal membrane and that tolerance to triclosan is facilitated by the fatty acid kinase A, FakA, and Geh, a triacylglycerol lipase. Finally, we demonstrate that human LDLs support the growth of S. aureus fatty acid auxotrophs. Together, these results suggest that human lipoprotein particles are a viable source of exogenous fatty acids for S. aureus during infection.IMPORTANCE Inhibition of bacterial fatty acid synthesis is a promising approach to combating infections caused by S. aureus and other human pathogens. However, S. aureus incorporates exogenous fatty acids into its phospholipid bilayer. Therefore, the clinical utility of targeting bacterial fatty acid synthesis is debated. Moreover, the fatty acid reservoir(s) exploited by S. aureus is not well understood. Human low-density lipoprotein particles represent a particularly abundant in vivo source of fatty acids and are present in tissues that S. aureus colonizes. Herein, we establish that S. aureus is capable of utilizing the fatty acids present in low-density lipoproteins to bypass both chemical and genetic inhibition of fatty acid synthesis. These findings imply that S. aureus targets LDLs as a source of fatty acids during pathogenesis.


Asunto(s)
Ácidos Grasos/biosíntesis , Lipoproteínas/metabolismo , Staphylococcus aureus Resistente a Meticilina/metabolismo , Infecciones Estafilocócicas/microbiología , Triclosán/metabolismo , Farmacorresistencia Bacteriana , Humanos , Lipoproteínas LDL/metabolismo , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Mutación , Fosfolípidos/metabolismo
10.
J Lipid Res ; 59(9): 1586-1596, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986998

RESUMEN

Long-chain PUFAs (LC-PUFAs; C20-C22; e.g., DHA and arachidonic acid) are highly enriched in vertebrate retina, where they are elongated to very-long-chain PUFAs (VLC-PUFAs; C 28) by the elongation of very-long-chain fatty acids-4 (ELOVL4) enzyme. These fatty acids play essential roles in modulating neuronal function and health. The relevance of different lipid requirements in rods and cones to disease processes, such as age-related macular degeneration, however, remains unclear. To better understand the role of LC-PUFAs and VLC-PUFAs in the retina, we investigated the lipid compositions of whole retinas or photoreceptor outer segment (OS) membranes in rodents with rod- or cone-dominant retinas. We analyzed fatty acid methyl esters and the molecular species of glycerophospholipids (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) by GC-MS/GC-flame ionization detection and ESI-MS/MS, respectively. We found that whole retinas and OS membranes in rod-dominant animals compared with cone-dominant animals had higher amounts of LC-PUFAs and VLC-PUFAs. Compared with those of rod-dominant animals, retinas and OS membranes from cone-dominant animals also had about 2-fold lower levels of di-DHA (22:6/22:6) molecular species of glycerophospholipids. Because PUFAs are necessary for optimal G protein-coupled receptor signaling in rods, these findings suggest that cones may not have the same lipid requirements as rods.


Asunto(s)
Ácidos Docosahexaenoicos/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Ácidos Docosahexaenoicos/química , Glicerofosfolípidos/metabolismo , Ratones
11.
Chem Res Toxicol ; 30(4): 1060-1075, 2017 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-28238261

RESUMEN

The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces hepatic steatosis mediated by the aryl hydrocarbon receptor. To further characterize TCDD-elicited hepatic lipid accumulation, mice were gavaged with TCDD every 4 days for 28 days. Liver samples were examined using untargeted lipidomics with structural confirmation of lipid species by targeted high-resolution MS/MS, and data were integrated with complementary RNA-Seq analyses. Approximately 936 unique spectral features were detected, of which 379 were confirmed as unique lipid species. Both male and female samples exhibited similar qualitative changes (lipid species) but differed in quantitative changes. A shift to higher mass lipid species was observed, indicative of increased free fatty acid (FFA) packaging. For example, of the 13 lipid classes examined, triglycerides increased from 46 to 48% of total lipids to 68-83% in TCDD treated animals. Hepatic cholesterol esters increased 11.3-fold in male mice with moieties consisting largely of dietary fatty acids (FAs) (i.e., linolenate, palmitate, and oleate). Phosphatidylserines, phosphatidylethanolamines, phosphatidic acids, and cardiolipins decreased 4.1-, 5.0-, 5.4- and 7.4-fold, respectively, while ceramides increased 6.6-fold. Accordingly, the integration of lipidomic data with differential gene expression associated with lipid metabolism suggests that in addition to the repression of de novo fatty acid synthesis and ß-oxidation, TCDD also increased hepatic uptake and packaging of lipids, while inhibiting VLDL secretion, consistent with hepatic fat accumulation and the progression to steatohepatitis with fibrosis.


Asunto(s)
Dibenzodioxinas Policloradas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Cardiolipinas/metabolismo , Ceramidas/metabolismo , Colesterol/biosíntesis , Ácidos Grasos/análisis , Hígado Graso/metabolismo , Hígado Graso/patología , Femenino , Expresión Génica/efectos de los fármacos , Lipoproteínas VLDL/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ácidos Fosfatidicos/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Dibenzodioxinas Policloradas/química , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/genética , Espectrometría de Masas en Tándem , Triglicéridos/análisis , Triglicéridos/metabolismo
12.
Am J Physiol Gastrointest Liver Physiol ; 310(9): G726-38, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26968211

RESUMEN

Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1ß, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy.


Asunto(s)
Cirrosis Hepática/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Perilipina-2/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Caspasa 1/genética , Caspasa 1/metabolismo , Deficiencia de Colina/complicaciones , Citocinas/genética , Citocinas/metabolismo , Lipoproteínas LDL/metabolismo , Cirrosis Hepática/etiología , Cirrosis Hepática/genética , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Perilipina-2/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Triglicéridos/metabolismo
13.
Plant Cell ; 25(2): 677-93, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23417035

RESUMEN

Enhancement of acyl-CoA-dependent triacylglycerol (TAG) synthesis in vegetative tissues is widely discussed as a potential avenue to increase the energy density of crops. Here, we report the identification and characterization of Chlamydomonas reinhardtii diacylglycerol acyltransferase type two (DGTT) enzymes and use DGTT2 to alter acyl carbon partitioning in plant vegetative tissues. This enzyme can accept a broad range of acyl-CoA substrates, allowing us to interrogate different acyl pools in transgenic plants. Expression of DGTT2 in Arabidopsis thaliana increased leaf TAG content, with some molecular species containing very-long-chain fatty acids. The acyl compositions of sphingolipids and surface waxes were altered, and cutin was decreased. The increased carbon partitioning into TAGs in the leaves of DGTT2-expressing lines had little effect on transcripts of the sphingolipid/wax/cutin pathway, suggesting that the supply of acyl groups for the assembly of these lipids is not transcriptionally adjusted. Caterpillars of the generalist herbivore Spodoptera exigua reared on transgenic plants gained more weight. Thus, the nutritional value and/or energy density of the transgenic lines was increased by ectopic expression of DGTT2 and acyl groups were diverted from different pools into TAGs, demonstrating the interconnectivity of acyl metabolism in leaves.


Asunto(s)
Arabidopsis/metabolismo , Chlamydomonas reinhardtii/enzimología , Diacilglicerol O-Acetiltransferasa/metabolismo , Lípidos/química , Hojas de la Planta/metabolismo , Acilcoenzima A/metabolismo , Animales , Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Diacilglicerol O-Acetiltransferasa/genética , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Herbivoria , Metabolismo de los Lípidos/genética , Lípidos de la Membrana/genética , Lípidos de la Membrana/metabolismo , Valor Nutritivo , Filogenia , Hojas de la Planta/química , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Esfingolípidos/química , Esfingolípidos/metabolismo , Spodoptera/fisiología , Triglicéridos/metabolismo , Ceras/metabolismo , Levaduras/genética
14.
Methods ; 87: 83-95, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25907253

RESUMEN

There is an increasing recognition of the role that cancer cell derived exosomes play in intercellular signaling upon fusion or uptake with a target cell, including immune system evasion, tumor growth and metastasis. To date, however, although exosomal membrane and cargo lipids are expected to play a pivotal role in exosome biogenesis and secretion, as well as in fusion or uptake and target cell functional response, the detailed characterization of cancer cell derived exosome lipids across a range of different cancers has not yet been broadly explored. Here, a simple and straightforward lipidome analysis strategy consisting of optimized sample extraction and novel sample derivatization techniques, coupled with high-resolution 'shotgun' mass spectrometry and 'targeted' tandem mass spectrometry methods, is demonstrated for the rapid identification of >520 individual lipids in 36 lipid classes and sub classes from exosomes secreted by the colorectal cancer cell line, LIM1215. Relative quantification and comparison of exosome versus cellular lipid profiles reveals significant enrichment of certain lipid classes, as well as substantial lipid subclass remodeling and changes in abundance of individual lipids, including sphingolipids, sterol lipids, glycerolipids and glycerophospholipids, and particularly plasmalogen- and alkyl ether-containing glycerophospholipids. This analysis strategy therefore provides a platform for comprehensive lipidome profiling across a wide range of cancer cell or tissue derived exosomes, that will facilitate subsequent functional studies aimed at elucidating the role of specific cellular or exosome lipids in the onset and progression of colorectal cancer, or to identify specific lipid(s) that could serve as effective diagnostic or prognostic disease biomarkers.


Asunto(s)
Colesterol/aislamiento & purificación , Células Epiteliales/química , Exosomas/química , Ácidos Grasos/aislamiento & purificación , Glicerofosfolípidos/aislamiento & purificación , Esfingolípidos/aislamiento & purificación , Fraccionamiento Celular/métodos , Línea Celular Tumoral , Colesterol/química , Células Epiteliales/patología , Ácidos Grasos/química , Glicerofosfolípidos/química , Humanos , Microextracción en Fase Líquida/métodos , Metaboloma , Recto/química , Recto/patología , Esfingolípidos/química , Espectrometría de Masas en Tándem
15.
J Lipid Res ; 55(8): 1797-809, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24879804

RESUMEN

Lipid extraction using a monophasic chloroform/methanol/water mixture, coupled with functional group selective derivatization and direct infusion nano-ESI-high-resolution/accurate MS, is shown to facilitate the simultaneous analysis of both highly polar and nonpolar lipids from a single retina lipid extract, including low abundance highly polar ganglioside lipids, nonpolar sphingolipids, and abundant glycerophospholipids. Quantitative comparison showed that the monophasic lipid extraction method yielded similar lipid distributions to those obtained from established "gold standard" biphasic lipid extraction methods known to enrich for either highly polar gangliosides or nonpolar lipids, respectively, with only modest relative ion suppression effects. This improved lipid extraction and analysis strategy therefore enables detailed lipidome analyses of lipid species across a broad range of polarities and abundances, from minimal amounts of biological samples and without need for multiple lipid class-specific extractions or chromatographic separation prior to analysis.


Asunto(s)
Lípidos/química , Lípidos/aislamiento & purificación , Extracción Líquido-Líquido/métodos , Espectrometría de Masas , Retina/química , Animales , Lípidos/clasificación , Masculino , Ratas
16.
Cell Metab ; 36(7): 1521-1533.e5, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38718792

RESUMEN

Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1ß induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy.


Asunto(s)
Ceramidas , Retinopatía Diabética , Inmunoterapia , Ceramidas/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/patología , Retinopatía Diabética/inmunología , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Masculino , Retina/metabolismo , Retina/patología , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Ratas , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Cuerpo Vítreo/metabolismo , Femenino , Ratones Noqueados
17.
Stem Cell Reports ; 19(3): 317-330, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38335962

RESUMEN

Congenital heart defects are the most prevalent human birth defects, and their incidence is exacerbated by maternal health conditions, such as diabetes during the first trimester (pregestational diabetes). Our understanding of the pathology of these disorders is hindered by a lack of human models and the inaccessibility of embryonic tissue. Using an advanced human heart organoid system, we simulated embryonic heart development under pregestational diabetes-like conditions. These organoids developed pathophysiological features observed in mouse and human studies before, including ROS-mediated stress and cardiomyocyte hypertrophy. scRNA-seq revealed cardiac cell-type-specific dysfunction affecting epicardial and cardiomyocyte populations and alterations in the endoplasmic reticulum and very-long-chain fatty acid lipid metabolism. Imaging and lipidomics confirmed these findings and showed that dyslipidemia was linked to fatty acid desaturase 2 mRNA decay dependent on IRE1-RIDD signaling. Targeting IRE1 or restoring lipid levels partially reversed the effects of pregestational diabetes, offering potential preventive and therapeutic strategies in humans.


Asunto(s)
Cardiomiopatías , Diabetes Mellitus , Cardiopatías Congénitas , Humanos , Ratones , Animales , Cardiopatías Congénitas/patología , Estrés del Retículo Endoplásmico/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Organoides/metabolismo , Lípidos
18.
J Clin Med ; 13(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792337

RESUMEN

Background/Objectives: Lipid metabolism plays an important role in maternal health and fetal development. There is a gap in the knowledge of how lipid metabolism changes during pregnancy for Black women who are at a higher risk of adverse outcomes. We hypothesized that the comprehensive lipidome profiles would show variation across pregnancy indicative of requirements during gestation and fetal development. Methods: Black women were recruited at prenatal clinics. Plasma samples were collected at 8-18 weeks (T1), 22-29 weeks (T2), and 30-36 weeks (T3) of pregnancy. Samples from 64 women who had term births (≥37 weeks gestation) were subjected to "shotgun" Orbitrap mass spectrometry. Mixed-effects models were used to quantify systematic changes and dimensionality reduction models were used to visualize patterns and identify reliable lipid signatures. Results: Total lipids and major lipid classes showed significant increases with the progression of pregnancy. Phospholipids and glycerolipids exhibited a gradual increase from T1 to T2 to T3, while sphingolipids and total sterol lipids displayed a more pronounced increase from T2 to T3. Acylcarnitines, hydroxy acylcarnitines, and Lyso phospholipid levels significantly decreased from T1 to T3. A deviation was that non-esterified fatty acids decreased from T1 to T2 and increased again from T2 to T3, suggestive of a potential role for these lipids during the later stages of pregnancy. The fatty acids showing this trend included key fatty acids-non-esterified Linoleic acid, Arachidonic acid, Alpha-linolenic acid, Eicosapentaenoic acid, Docosapentaenoic acid, and Docosahexaenoic acid. Conclusions: Mapping lipid patterns and identifying lipid signatures would help develop intervention strategies to reduce perinatal health disparities among pregnant Black women.

19.
Methods Mol Biol ; 2592: 89-100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36507987

RESUMEN

Recent clinical trials demonstrated strong association between lipid abnormalities and progression of diabetic retinopathy (DR); however, whether circulating lipid levels or retinal lipid metabolism, or both, contributes to the pathogenesis of DR is not well understood. Limited amounts of retinal tissue available from animal models, such as mouse models of DR, have proved. Limited amount of retinal tissue was especially challenging for cholesterol and oxysterol detection as it precluded identification of individual isomers of each nonesterified sterol class. To measure cholesterol and oxysterols from limited retinal tissue samples, we developed extremely sensitive electrospray ionization liquid chromatography high-resolution/accurate mass measurements on an LTQ Orbitrap Velos mass spectrometer that are able to resolve sterols and oxysterols separated by reverse-phase HPLC using a gradient of 85-100% methanol containing 0.1% formic acid, with subsequent detection in positive ionization mode. This methodology will aid in our understanding of diabetes-induced changes in retinal cholesterol and oxysterol metabolism.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Oxiesteroles , Animales , Ratones , Retinopatía Diabética/diagnóstico , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Esteroles/análisis , Colesterol/metabolismo
20.
Methods Mol Biol ; 2625: 269-290, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653650

RESUMEN

Several recent studies suggest that C24-C38 very long chain fatty acids (VLCFA) play an important role in vision, and decreased levels of retina VLCFA have been associated with vision disorders including the onset and progression of diabetic retinopathy in animal models. Traditional methods for VLCFA analysis lack the sensitivity and specificity needed to enable detailed characterization of VLCFA incorporation into complex lipids in tissues and subcellular components. To assess whether decreased VLCFA in diabetic retina are directly implicated in diabetes-induced breakdown of the blood-retinal barrier, we demonstrated the utility of performing untargeted lipid analysis via Orbitrap high resolution/accurate mass MS and MS/MS-based shotgun lipidomics to identify structural lipids containing VLCFA substituents. This comprehensive and highly sensitive approach to untargeted lipid identification enabled us to characterize low-abundance sphingolipids containing very long chain fatty acids from isolated retinal tight junction complexes, as well as VLCFA-containing phospholipids in retinal tissues. To facilitate future biochemical and physiological studies of the roles of VLCFA in blood-retina barrier integrity and maintenance of vision, this chapter describes steps to isolate tight junction complexes from a cell culture model of the outer blood-retinal barrier and perform untargeted Orbitrap high resolution/accurate mass-based lipid analysis to identify VLCFA in tight junctions and retina tissue.


Asunto(s)
Retinopatía Diabética , Uniones Estrechas , Animales , Uniones Estrechas/metabolismo , Espectrometría de Masas en Tándem , Retina/metabolismo , Ácidos Grasos/metabolismo , Retinopatía Diabética/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA