Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230223, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853551

RESUMEN

Commentaries about long-term potentiation (LTP) generally proceed with an implicit assumption that largely the same physiological effect is sampled across different experiments. However, this is clearly not the case. We illustrate the point by comparing LTP in the CA3 projections to CA1 with the different forms of potentiation in the dentate gyrus. These studies lead to the hypothesis that specialized properties of CA1-LTP are adaptations for encoding unsupervised learning and episodic memory, whereas the dentate gyrus variants subserve learning that requires multiple trials and separation of overlapping bodies of information. Recent work has added sex as a second and somewhat surprising dimension along which LTP is also differentiated. Triggering events for CA1-LTP differ between the sexes and the adult induction threshold is significantly higher in females; these findings help explain why males have an advantage in spatial learning. Remarkably, the converse is true before puberty: Females have the lower LTP threshold and are better at spatial memory problems. A mechanism has been identified for the loss-of-function in females but not for the gain-of-function in males. We propose that the many and disparate demands of natural environments, with different processing requirements across ages and between sexes, led to the emergence of multiple LTPs. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Potenciación a Largo Plazo , Animales , Femenino , Humanos , Masculino , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Giro Dentado/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Factores Sexuales
2.
Front Behav Neurosci ; 18: 1349053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516050

RESUMEN

Context contributes to multiple aspects of human episodic memory including segmentation and retrieval. The present studies tested if, in adult male and female mice, context influences the encoding of odors encountered in a single unsupervised sampling session of the type used for the routine acquisition of episodic memories. The three paradigms used differed in complexity (single vs. multiple odor cues) and period from sampling to testing. Results show that males consistently encode odors in a context-dependent manner: the mice discriminated novel from previously sampled cues when tested in the chamber of initial cue sampling but not in a distinct yet familiar chamber. This was independent of the interval between cue encounters or the latency from initial sampling to testing. In contrast, female mice acquired both single cues and the elements of multi-cue episodes, but recall of that information was dependent upon the surrounding context only when the cues were presented serially. These results extend the list of episodic memory features expressed by rodents and also introduce a striking and unexpected sex difference in context effects.

3.
bioRxiv ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38328108

RESUMEN

Men generally outperform women on encoding spatial components of episodic memory whereas the reverse holds for semantic elements. Here we show that female mice outperform males on tests for non-spatial aspects of episodic memory ("what", "when"), suggesting that the human findings are influenced by neurobiological factors common to mammals. Analysis of hippocampal synaptic plasticity mechanisms and encoding revealed unprecedented, sex-specific contributions of non-classical metabotropic NMDA receptor (NMDAR) functions. While both sexes used non-ionic NMDAR signaling to trigger actin polymerization needed to consolidate long-term potentiation (LTP), NMDAR GluN2B subunit antagonism blocked these effects in males only and had the corresponding sex-specific effect on episodic memory. Conversely, blocking estrogen receptor alpha eliminated metabotropic stabilization of LTP and episodic memory in females only. The results show that sex differences in metabotropic signaling critical for enduring synaptic plasticity in hippocampus have significant consequences for encoding episodic memories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA