Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 299(4): E607-14, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20663988

RESUMEN

Hepatic glucagon action increases in response to accelerated metabolic demands and is associated with increased whole body substrate availability, including circulating lipids. The hypothesis that increases in hepatic glucagon action stimulate AMP-activated protein kinase (AMPK) signaling and peroxisome proliferator-activated receptor-α (PPARα) and fibroblast growth factor 21 (FGF21) expression in a manner modulated by fatty acids was tested in vivo. Wild-type (gcgr(+/+)) and glucagon receptor-null (gcgr(-/-)) littermate mice were studied using an 18-h fast, exercise, and hyperglucagonemic-euglycemic clamps plus or minus increased circulating lipids. Fasting and exercise in gcgr(+/+), but not gcgr(-/-) mice, increased hepatic phosphorylated AMPKα at threonine 172 (p-AMPK(Thr(172))) and PPARα and FGF21 mRNA. Clamp results in gcgr(+/+) mice demonstrate that hyperlipidemia does not independently impact or modify glucagon-stimulated increases in hepatic AMP/ATP, p-AMPK(Thr(172)), or PPARα and FGF21 mRNA. It blunted glucagon-stimulated acetyl-CoA carboxylase phosphorylation, a downstream target of AMPK, and accentuated PPARα and FGF21 expression. All effects were absent in gcgr(-/-) mice. These findings demonstrate that glucagon exerts a critical regulatory role in liver to stimulate pathways linked to lipid metabolism in vivo and shows for the first time that effects of glucagon on PPARα and FGF21 expression are amplified by a physiological increase in circulating lipids.


Asunto(s)
Adenilato Quinasa/metabolismo , Emulsiones Grasas Intravenosas/metabolismo , Factores de Crecimiento de Fibroblastos/biosíntesis , Glucagón/metabolismo , Hígado/metabolismo , PPAR alfa/biosíntesis , Adenilato Quinasa/genética , Animales , Área Bajo la Curva , Glucemia/metabolismo , Catecolaminas/sangre , Ácidos Grasos no Esterificados/sangre , Femenino , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Técnica de Clampeo de la Glucosa , Insulina/sangre , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR alfa/genética , PPAR alfa/metabolismo , Condicionamiento Físico Animal/fisiología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores de Glucagón/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
3.
Diabetes ; 60(11): 2720-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21885872

RESUMEN

OBJECTIVE: Exercise is an effective intervention to treat fatty liver. However, the mechanism(s) that underlie exercise-induced reductions in fatty liver are unclear. Here we tested the hypothesis that exercise requires hepatic glucagon action to reduce fatty liver. RESEARCH DESIGN AND METHODS: C57BL/6 mice were fed high-fat diet (HFD) and assessed using magnetic resonance, biochemical, and histological techniques to establish a timeline for fatty liver development over 20 weeks. Glucagon receptor null (gcgr(-/-)) and wild-type (gcgr(+/+)) littermate mice were subsequently fed HFD to provoke moderate fatty liver and then performed either 10 or 6 weeks of running wheel or treadmill exercise, respectively. RESULTS: Exercise reverses progression of HFD-induced fatty liver in gcgr(+/+) mice. Remarkably, such changes are absent in gcgr(-/-) mice, thus confirming the hypothesis that exercise-stimulated hepatic glucagon receptor activation is critical to reduce HFD-induced fatty liver. CONCLUSIONS: These findings suggest that therapies that use antagonism of hepatic glucagon action to reduce blood glucose may interfere with the ability of exercise and perhaps other interventions to positively affect fatty liver.


Asunto(s)
Hígado Graso/metabolismo , Hígado Graso/terapia , Glucagón/metabolismo , Hígado/metabolismo , Actividad Motora , Receptores de Glucagón/metabolismo , Animales , Peso Corporal , Grasas de la Dieta/efectos adversos , Progresión de la Enfermedad , Hígado Graso/patología , Metabolismo de los Lípidos , Hígado/patología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glucagón/genética , Transducción de Señal
4.
Endocrinology ; 150(9): 4084-93, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19470704

RESUMEN

Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator shown to improve glycemic control. However, the molecular and functional mechanisms underlying FGF21-mediated improvements in glycemic control are not completely understood. We examined FGF21 effects on insulin sensitivity and glucose fluxes upon chronic (daily injection for 8 d) and acute (6 h infusion) administration in ob/+ and ob/ob mice. Results show that chronic FGF21 ameliorated fasting hyperglycemia in ob/ob mice via increased glucose disposal and improved hepatic insulin sensitivity. Acute FGF21 suppressed hepatic glucose production, increased liver glycogen, lowered glucagon, and improved glucose clearance in ob/+ mice. These effects were blunted in ob/ob mice. Neither chronic nor acute FGF21 altered skeletal muscle or adipose tissue glucose uptake in either genotype. In conclusion, FGF21 has potent glycemic effects caused by hepatic changes in glucose flux and improved insulin sensitivity. Thus, these studies define mechanisms underlying anti-hyperglycemic actions of FGF21 and support its therapeutic potential.


Asunto(s)
Glucemia/metabolismo , Factores de Crecimiento de Fibroblastos/fisiología , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Animales , Ayuno , Glucagón/metabolismo , Hígado/efectos de los fármacos , Glucógeno Hepático/metabolismo , Masculino , Ratones , Ratones Obesos
5.
J Biol Chem ; 284(36): 23925-34, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19525228

RESUMEN

AMP-activated protein kinase (AMPK) has been postulated as a super-metabolic regulator, thought to exert numerous effects on skeletal muscle function, metabolism, and enzymatic signaling. Despite these assertions, little is known regarding the direct role(s) of AMPK in vivo, and results obtained in vitro or in situ are conflicting. Using a chronically catheterized mouse model (carotid artery and jugular vein), we show that AMPK regulates skeletal muscle metabolism in vivo at several levels, with the result that a deficit in AMPK activity markedly impairs exercise tolerance. Compared with wild-type littermates at the same relative exercise capacity, vascular glucose delivery and skeletal muscle glucose uptake were impaired; skeletal muscle ATP degradation was accelerated, and arterial lactate concentrations were increased in mice expressing a kinase-dead AMPKalpha2 subunit (alpha2-KD) in skeletal muscle. Nitric-oxide synthase (NOS) activity was significantly impaired at rest and in response to exercise in alpha2-KD mice; expression of neuronal NOS (NOSmicro) was also reduced. Moreover, complex I and IV activities of the electron transport chain were impaired 32 +/- 8 and 50 +/- 7%, respectively, in skeletal muscle of alpha2-KD mice (p < 0.05 versus wild type), indicative of impaired mitochondrial function. Thus, AMPK regulates neuronal NOSmicro expression, NOS activity, and mitochondrial function in skeletal muscle. In addition, these results clarify the role of AMPK in the control of muscle glucose uptake during exercise. Collectively, these findings demonstrate that AMPK is central to substrate metabolism in vivo, which has important implications for exercise tolerance in health and certain disease states characterized by impaired AMPK activation in skeletal muscle.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Esquelético/enzimología , Condicionamiento Físico Animal/fisiología , Resistencia Física/fisiología , Proteínas Quinasas Activadas por AMP/genética , Animales , Activación Enzimática/fisiología , Femenino , Glucosa/fisiología , Masculino , Ratones , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo
6.
J Clin Invest ; 119(8): 2412-22, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19662685

RESUMEN

The hepatic energy state, defined by adenine nucleotide levels, couples metabolic pathways with energy requirements. This coupling is fundamental in the adaptive response to many conditions and is impaired in metabolic disease. We have found that the hepatic energy state is substantially reduced following exercise, fasting, and exposure to other metabolic stressors in C57BL/6 mice. Glucagon receptor signaling was hypothesized to mediate this reduction because increased plasma levels of glucagon are characteristic of metabolic stress and because this hormone stimulates energy consumption linked to increased gluconeogenic flux through cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) and associated pathways. We developed what we believe to be a novel hyperglucagonemic-euglycemic clamp to isolate an increment in glucagon levels while maintaining fasting glucose and insulin. Metabolic stress and a physiological rise in glucagon lowered the hepatic energy state and amplified AMP-activated protein kinase signaling in control mice, but these changes were abolished in glucagon receptor- null mice and mice with liver-specific PEPCK-C deletion. 129X1/Sv mice, which do not mount a glucagon response to hypoglycemia, displayed an increased hepatic energy state compared with C57BL/6 mice in which glucagon was elevated. Taken together, these data demonstrate in vivo that the hepatic energy state is sensitive to glucagon receptor activation and requires PEPCK-C, thus providing new insights into liver metabolism.


Asunto(s)
Metabolismo Energético , Hígado/metabolismo , Receptores de Glucagón/fisiología , Transducción de Señal/fisiología , Adenosina Difosfato/análisis , Adenosina Monofosfato/análisis , Adenosina Trifosfato/análisis , Animales , Glucagón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA