Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 42(5): 613-631, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35387479

RESUMEN

BACKGROUND: Macrophages are involved in the pathogenesis of pulmonary arterial hypertension (PAH). Caspase-8, an apical component of cell death pathways, is significantly upregulated in macrophages of PAH animal models. However, its role in PAH remains unclear. Caspase-8 plays a critical role in regulating inflammatory responses via inflammasome activation, cell death, and cytokine induction. This study investigated the mechanism of regulation of IL-1ß (interleukin 1ß) activation in macrophages by caspase-8. METHODS: A hypoxia + SU5416-induced PAH mouse model and monocrotaline-induced rat model of PAH were constructed and the role of caspase-8 was analyzed. RESULTS: Caspase-8 and cleaved-caspase-8 were significantly upregulated in the lung tissues of SU5416 and hypoxia-treated PAH mice and monocrotaline-treated rats. Pharmacological inhibition of caspase-8 alleviated PAH compared with wild-type mice, observed as a significant reduction in right ventricular systolic pressure, ratio of right ventricular wall to left ventricular wall plus ventricular septum, pulmonary vascular media thickness, and pulmonary vascular muscularization; caspase-8 ablated mice also showed significant remission. Mechanistically, increased proliferation of pulmonary arterial smooth muscle cellss is closely associated with activation of the NLRP3 (NOD [nucleotide oligomerization domain]-, LRR [leucine-rich repeat]-, and PYD [pyrin domain]-containing protein 3) inflammasome and the IL-1ß signaling pathway. Although caspase-8 did not affect extracellular matrix synthesis, it promoted inflammatory cell infiltration and pulmonary arterial smooth muscle cell proliferation via NLRP3/IL-1ß activation during the development stage of PAH. CONCLUSIONS: Taken together, our study suggests that macrophage-derived IL-1ß via caspase-8-dependent canonical inflammasome is required for macrophages to play a pathogenic role in pulmonary perivascular inflammation.


Asunto(s)
Hipertensión Pulmonar , Animales , Caspasa 1/metabolismo , Caspasa 8/metabolismo , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/genética , Hipoxia/complicaciones , Inflamasomas/metabolismo , Inflamación/complicaciones , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Ratones , Monocrotalina/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas
2.
Circ Res ; 127(10): 1323-1336, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32912104

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by progressive pulmonary vascular remodeling, accompanied by varying degrees of perivascular inflammation. Niacin, a commonly used lipid-lowering drug, possesses vasodilating and proresolution effects by promoting the release of prostaglandin D2 (PGD2). However, whether or not niacin confers protection against PAH pathogenesis is still unknown. OBJECTIVE: This study aimed to determine whether or not niacin attenuates the development of PAH and, if so, to elucidate the molecular mechanisms underlying its effects. METHODS AND RESULTS: Vascular endothelial growth factor receptor inhibitor SU5416 and hypoxic exposure were used to induce pulmonary hypertension (PH) in rodents. We found that niacin attenuated the development of this hypoxia/SU5416-induced PH in mice and suppressed progression of monocrotaline-induced and hypoxia/SU5416-induced PH in rats through the reduction of pulmonary artery remodeling. Niacin boosted PGD2 generation in lung tissue, mainly through H-PGDS (hematopoietic PGD2 synthases). Deletion of H-PGDS, but not lipocalin-type PGDS, exacerbated the hypoxia/SU5416-induced PH in mice and abolished the protective effects of niacin against PAH. Moreover, H-PGDS was expressed dominantly in infiltrated macrophages in lungs of PH mice and patients with idiopathic PAH. Macrophage-specific deletion of H-PGDS markedly decreased PGD2 generation in lungs, aggravated hypoxia/SU5416-induced PH in mice, and attenuated the therapeutic effect of niacin on PAH. CONCLUSIONS: Niacin treatment ameliorates the progression of PAH through the suppression of vascular remodeling by stimulating H-PGDS-derived PGD2 release from macrophages.


Asunto(s)
Antihipertensivos/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Hipolipemiantes/farmacología , Macrófagos/efectos de los fármacos , Niacina/farmacología , Animales , Antihipertensivos/uso terapéutico , Células Cultivadas , Humanos , Hipertensión Pulmonar/metabolismo , Hipolipemiantes/uso terapéutico , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Macrófagos/metabolismo , Ratones , Niacina/uso terapéutico , Prostaglandina D2/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Ratas
3.
Circulation ; 141(8): 655-666, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-31893939

RESUMEN

BACKGROUND: Blood pressure often rises with aging, but exact mechanisms are still not completely understood. With aging, the level of proinflammatory cytokines increases in T lymphocytes. Prostaglandin D2, a proresolution mediator, suppresses Type 1 T helper (Th1) cytokines through D-prostanoid receptor 1 (DP1). In this study, we aimed to investigate the role of the prostaglandin D2/DP1 axis in T cells on age-related hypertension. METHODS: To clarify the physiological and pathophysiological roles of DP1 in T cells with aging, peripheral blood samples were collected from young and older male participants, and CD4+ T cells were sorted for gene expression, prostaglandin production, and Western blot assays. Mice blood pressure was quantified by invasive telemetric monitor. RESULTS: The prostaglandin D2/DP1 axis was downregulated in CD4+ T cells from older humans and aged mice. DP1 deletion in CD4+ T cells augmented age-related hypertension in aged male mice by enhancing Th1 cytokine secretion, vascular remodeling, CD4+ T cells infiltration, and superoxide production in vasculature and kidneys. Conversely, forced expression of exogenous DP1 in T cells retarded age-associated hypertension in mice by reducing Th1 cytokine secretion. Tumor necrosis factor α neutralization or interferon γ deletion ameliorated the age-related hypertension in DP1 deletion in CD4+ T cells mice. Mechanistically, DP1 inhibited Th1 activity via the PKA (protein kinase A)/p-Sp1 (phosphorylated specificity protein 1)/neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) pathway-mediated T-box-expressed-in-T-cells (T-bet) ubiquitination. T-bet deletion or forced NEDD4L expression in CD4+ T cells attenuated age-related hypertension in CD4+ T cell-specific DP1-deficient mice. DP1 receptor activation by BW245C prevented age-associated blood pressure elevation and reduced vascular/renal superoxide production in male mice. CONCLUSIONS: The prostaglandin D2/DP1 axis suppresses age-related Th1 activation and subsequent hypertensive response in male mice through increase of NEDD4L-mediated T-bet degradation by ubiquitination. Therefore, the T cell DP1 receptor may be an attractive therapeutic target for age-related hypertension.


Asunto(s)
Envejecimiento , Linfocitos T CD4-Positivos/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Receptores de Prostaglandina/metabolismo , Proteínas de Dominio T Box/metabolismo , Anciano , Animales , Antihipertensivos/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citocinas/metabolismo , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/patología , Ratones , Ratones Endogámicos C57BL , Prostaglandina D2/metabolismo , Receptores de Prostaglandina/agonistas , Receptores de Prostaglandina/deficiencia , Receptores de Prostaglandina/genética , Transducción de Señal , Factor de Transcripción Sp1/metabolismo , Superóxidos/metabolismo , Células TH1/metabolismo , Ubiquitinación
4.
Exp Cell Res ; 389(1): 111890, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32035132

RESUMEN

Fibrosis is a key pathological event during muscle aging that accelerates the development of sarcopenia. We show that sarcolipin (SLN) is highly expressed during aging, promotes intracellular calcium overload and participates in impaired myogenic differentiation. d-Galactose (D-gal) was used to induce senescence in C2C12 myoblasts. Conventional AAV-mediated SLN knockdown cells were used to study the role of SLN in muscle physiology and pathophysiology. C2C12 cells were treated with D-gal, which promoted fibrosis and SLN upregulation. The expression of TGF-ß1 and α-SMA, which participate in myogenic transdifferentiation, were also elevated. C2C12 cells with reduced sarcolipin expression produced decreased amounts of collagen. Our study identified an unrecognized role of SLN in regulating myogenic transdifferentiation during aging-associated skeletal muscle cell fibrosis. Targeting SLN may be a novel therapeutic strategy to relieve sarcopenia-associated muscle fibrosis.


Asunto(s)
Transdiferenciación Celular/efectos de los fármacos , Proteínas Musculares/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Proteolípidos/farmacología , Sarcopenia/patología , Animales , Calcio/metabolismo , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Fibrosis , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Sarcopenia/complicaciones , Sarcopenia/metabolismo
5.
Am J Respir Crit Care Med ; 201(10): 1263-1276, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31917615

RESUMEN

Rationale: Vascular remodeling, including smooth muscle cell hypertrophy and proliferation, is the key pathological feature of pulmonary arterial hypertension (PAH). Prostaglandin I2 analogs (beraprost, iloprost, and treprostinil) are effective in the treatment of PAH. Of note, the clinically favorable effects of treprostinil in severe PAH may be attributable to concomitant activation of DP1 (D prostanoid receptor subtype 1).Objectives: To study the role of DP1 in the progression of PAH and its underlying mechanism.Methods: DP1 levels were examined in pulmonary arteries of patients and animals with PAH. Multiple genetic and pharmacologic approaches were used to investigate DP1-mediated signaling in PAH.Measurements and Main Results: DP1 expression was downregulated in hypoxia-treated pulmonary artery smooth muscle cells and in pulmonary arteries from rodent PAH models and patients with idiopathic PAH. DP1 deletion exacerbated pulmonary artery remodeling in hypoxia-induced PAH, whereas pharmacological activation or forced expression of the DP1 receptor had the opposite effect in different rodent models. DP1 deficiency promoted pulmonary artery smooth muscle cell hypertrophy and proliferation in response to hypoxia via induction of mTORC1 (mammalian target of rapamycin complex 1) activity. Rapamycin, an inhibitor of mTORC1, alleviated the hypoxia-induced exacerbation of PAH in DP1-knockout mice. DP1 activation facilitated raptor dissociation from mTORC1 and suppressed mTORC1 activity through PKA (protein kinase A)-dependent phosphorylation of raptor at Ser791. Moreover, treprostinil treatment blocked the progression of hypoxia-induced PAH in mice in part by targeting the DP1 receptor.Conclusions: DP1 activation attenuates hypoxia-induced pulmonary artery remodeling and PAH through PKA-mediated dissociation of raptor from mTORC1. These results suggest that the DP1 receptor may serve as a therapeutic target for the management of PAH.


Asunto(s)
Hipoxia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Hipertensión Arterial Pulmonar/genética , Receptores Inmunológicos/genética , Receptores de Prostaglandina/genética , Remodelación Vascular/genética , Animales , Antihipertensivos/farmacología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación hacia Abajo , Epoprostenol/análogos & derivados , Epoprostenol/farmacología , Humanos , Hipertrofia , Inmunosupresores/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar , ARN Mensajero/metabolismo , Ratas , Sirolimus/farmacología
6.
Arterioscler Thromb Vasc Biol ; 39(4): e130-e145, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30676070

RESUMEN

Objective- Macrophages participate in the pathogenesis of pulmonary arterial hypertension (PAH). Lgmn (Legumain), a newly discovered cysteine proteinase belonging to the C13 peptidase family, is primarily expressed in macrophages; however, its roles in PAH remain unknown. Approach and Results- Herein, Lgmn was upregulated in lung tissues of PAH mice subjected to hypoxia plus SU5416 and PAH rats challenged with monocrotaline. Global Lgmn ablation and macrophage-specific ablation alleviated PAH compared with wild-type mice, evident from a reduction in right ventricular systolic pressure, the ratio of the right ventricular wall to the left ventricular wall plus the septum, the pulmonary vascular media thickness, and pulmonary vascular muscularization. Increased expression of ECM (extracellular matrix) proteins was correlated with MMP (matrix metalloproteinase)-2 activation and TGF (transforming growth factor)-ß1 signaling in the PAs. Although Lgmn did not affect inflammatory cell infiltration and PA smooth muscle cell proliferation, it drove increased the synthesis of ECM proteins via MMP-2 activation. MMP-2 hydrolyzed the TGF-ß1 precursor to the active form. An Lgmn-specific inhibitor markedly ameliorated PAH. Clinically, serum Lgmn levels were closely associated with the severity of idiopathic PAH. Conclusions- Our results indicate that Lgmn inhibition could be an effective strategy for preventing or delaying PAH.


Asunto(s)
Cisteína Endopeptidasas/fisiología , Hipertensión Pulmonar/enzimología , Macrófagos/enzimología , Metaloproteinasa 2 de la Matriz/fisiología , Factor de Crecimiento Transformador beta1/fisiología , Animales , Inhibidores de Caspasas/farmacología , Cisteína Endopeptidasas/deficiencia , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/prevención & control , Hipoxia/enzimología , Indoles/toxicidad , Inflamación , Pulmón/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Monocrotalina/toxicidad , Pirroles/toxicidad , Ratas , Índice de Severidad de la Enfermedad , Transducción de Señal , Remodelación Vascular/fisiología
7.
Cardiovasc Res ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900927

RESUMEN

AIMS: MicroRNA-126 (miR-126), one of the most abundant microRNAs in platelets, is involved in the regulation of platelet activity and the circulating miR-126 is reduced during antiplatelet therapy. However, whether intraplatelet miR-126 plays a role in thrombosis and platelet inhibition remains unclear. METHODS AND RESULTS: Here, using tissue-specific knockout mice, we reported that the deficiency of miR-126 in platelets and vascular endothelial cells significantly prevented thrombosis and prolonged bleeding time. Using chimeric mice, we identified that the lack of intraplatelet miR-126 significantly prevented thrombosis. Ex vivo experiments further demonstrated that miR-126-deficient platelets displayed impaired platelet aggregation, spreading and secretory functions. Next, miR-126 was confirmed to target phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2) in platelet, which encodes a negative regulator of the PI3 K/AKT pathway, enhancing platelet activation through activating the integrin αIIbß3-mediated outside-in signaling. After undergoing myocardial infarction (MI), chimeric mice lacking intraplatelet miR-126 displayed reduced microvascular obstruction and prevented MI expansion in vivo. In contrast, overexpression of miR-126 by the administration of miR-126 agonist (agomiR-126) in wild-type mice aggravated microvascular obstruction and promoted MI expansion, which can be almost abolished by aspirin administration. In patients with cardiovascular diseases, antiplatelet therapies, either aspirin alone or combined with clopidogrel, decreased the level of intraplatelet miR-126. The reduction of intraplatelet miR-126 level was associated with the decrease of platelet activity. CONCLUSIONS: Our murine and human data reveal that (i) intraplatelet miR-126 contributes to platelet activity and promotes thrombus formation, and (ii) the reduction of intraplatelet miR-126 contributes to platelet inhibition during antiplatelet therapy.

8.
Vascul Pharmacol ; 153: 107233, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37742818

RESUMEN

Abnormal proliferation of pulmonary arterial smooth muscle cells (PASMCs) is a key mechanism in the development of pulmonary arterial hypertension (PAH). Signal transducer and activator of transcription 3 (STAT3) signalling plays a critical role in modulating PASMC proliferation, and G-protein-coupled receptor kinase 6 (GRK6) regulates the STAT3 pathway. However, the mechanism underlying the relationship between GRK6 and PAH remains unclear. In this study, we aimed to investigate the role of GRK6 in PAH and determine its potential as a therapeutic target. We utilised hypoxia- and SU5416-induced PAH mouse models and a monocrotaline-induced PAH rat model to analyse the involvement of GRK6. We conducted gain- and loss-of-function experiments using mouse PASMCs. Modulation of GRK6 expression was achieved via a lentiviral vector in vitro and an adeno-associated virus serotype 1 encoding GRK6 in vivo. GRK6 was significantly downregulated in the lung tissues of PAH mice and rats, predominantly in PASMCs. Knockout of GRK6 exacerbated PAH, while both therapeutic and prophylactic overexpression of GRK6 alleviated PAH, as evidenced by a reduction in right ventricular systolic pressure, right ventricular wall to left ventricular wall plus ventricular septum ratio, pulmonary vascular media thickness, and pulmonary vascular muscularisation. Mechanistically, GRK6 overexpression attenuated hypoxia-induced PASMC proliferation and STAT3 phosphorylation. Conversely, knockdown of GRK6 promoted hypoxia-induced proliferation, which was mitigated by a STAT3 inhibitor. Our findings highlight the potential protective and beneficial roles of GRK6 in PAH; we propose a lung-targeted GRK6 gene therapy utilizing adeno-associated virus serotype 1 as a potential treatment approach for patients with PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Ratas , Ratones , Animales , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/prevención & control , Hipertensión Pulmonar/tratamiento farmacológico , Ratas Sprague-Dawley , Proliferación Celular , Ratones Noqueados , Arteria Pulmonar , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
9.
Ann Transl Med ; 9(11): 926, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34350241

RESUMEN

BACKGROUND: To explore the source, the role and the specific mechanism of IL-35 and its downstream molecules in the development of pulmonary hypertension. METHODS: 8-10 weeks male mice were undergoing hypoxia combined with SU5416 (HySu) to establish a pulmonary hypertension (PH) model. The phenotype of PH mice was measured by immunohistochemistry and immunofluorescence staining. The levels of two subunits (EBI3 and p35 subunits) in lung tissue were measured by real-time PCR and western blotting. EBI3 monoclonal antibody was administrated as IL-35 neutralization to offset systemic IL-35 expression. Fludarabine, an inhibitor of STAT1 (signal transducer and activator of transcription 1) was used to clarify the role of STAT1 under IL-35 treatment. RESULTS: After pulmonary hypertension, the expression of IL-35 and its two subunits (EBI3 and p35 subunits) in lung tissue were significantly increased. And the two subunits of IL-35 are highly expressed in Treg cells. Compared with the controlled PH mice, the IL-35 neutralization PH mice showed aggravated pulmonary hypertension phenotype. The specific manifestations are the increase of right ventricular systolic pressure (RVSP), the growing proportion of right heart [RV/(LV+S)], and the remodeling of pulmonary blood vessels increases. The expression of pulmonary vascular endothelium (CD31) in PH mice increased, and the proliferation ability of vascular endothelium enhanced after IL-35 was inhibited. IL-35 phosphorylates STAT1 through the receptor GP130 on pulmonary vascular endothelial cells, which in turn inhibits endothelial cell proliferation. IL-35 recombinant protein can reduce the expression of CD31 in lung tissues of PH mice. But the administration of STAT1 inhibitor made it invalid from the IL-35 effect of reversing pulmonary hypertension. CONCLUSIONS: Tregs-derived IL-35 can reverse the remodeling of pulmonary blood vessels and alleviate the progression of pulmonary hypertension by reducing the proliferation of endothelial cells.

10.
Front Psychiatry ; 12: 782753, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153854

RESUMEN

This study aimed to investigate the effects of long-term home quarantine on the mental health of people during the COVID-19 epidemic in Shanghai. We conducted an online questionnaire survey on March 26 2020 and collected data on demographics, level of physical activity (PA), and mental health status of the participants. We assessed the mental health status using the Patient Health Questionnaire (PHQ-9) and Generalized Anxiety Disorder Scale (GAD-7), whereas PA was assessed using International Physical Activity Questionnaire Short Form (IPAQ-SF). Of all 2,409 valid samples, participants reported performing a total of 2015.20 metabolic equivalent of task (MET)-minutes/week of total PA before the outbreak period and 1720.29 MET-minutes/week of total PA during the outbreak period (p < 0.001). Participants who spent a longer time at home reported to have a better performance on the PHQ-9 (p = 0.087) and GAD-7 (p < 0.001). A high level of PA was considered an protective factor against depression (OR = 0.755, 95% CI 0.603-0.944, p < 0.001). Additionally, a high level of PA had a preventative effect on anxiety (OR = 0.741, 95% CI 0.568-0.967, p < 0.001), and a longer working period during the outbreak was shown to be a risk factor for anxiety (11-29 days, OR 1.455, 95% CI 1.110-1.909; 30-60 days OR 1.619, 95% CI 1.227-2.316). Home confinement during the pandemic might not have a negative effect on mental health provided that people engage in more PA indoors. This study encourages interventions for mental health problems through physical exercise.

11.
EBioMedicine ; 69: 103471, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34229277

RESUMEN

BACKGROUND: Metabolic syndrome (MetS) is highly related to the excessive accumulation of visceral adipose tissue (VAT). Quantitative measurements of VAT are commonly applied in clinical practice for measurement of metabolic risks; however, it remains largely unknown whether the texture of VAT can evaluate visceral adiposity, stratify MetS and predict surgery-induced weight loss effects. METHODS: 675 Chinese adult volunteers and 63 obese patients (with bariatric surgery) were enrolled. Texture features were extracted from VATs of the computed tomography (CT) scans and machine learning was applied to identify significant imaging biomarkers associated with metabolic-related traits. FINDINGS: Combined with sex, ten VAT texture features achieved areas under the curve (AUCs) of 0.872, 0.888, 0.961, and 0.947 for predicting the prevalence of insulin resistance, MetS, central obesity, and visceral obesity, respectively. A novel imaging biomarker, RunEntropy, was identified to be significantly associated with major metabolic outcomes and a 3.5-year follow-up in 338 volunteers demonstrated its long-term effectiveness. More importantly, the preoperative imaging biomarkers yielded high AUCs and accuracies for estimation of surgery responses, including the percentage of excess weight loss (%EWL) (0.867 and 74.6%), postoperative BMI group (0.930 and 76.1%), postoperative insulin resistance (0.947 and 88.9%), and excess visceral fat loss (the proportion of visceral fat reduced over 50%; 0.928 and 84.1%). INTERPRETATION: This study shows that the texture features of VAT have significant clinical implications in evaluating metabolic disorders and predicting surgery-induced weight loss effects. FUNDING: The complete list of funders can be found in the Acknowledgement section.


Asunto(s)
Cirugía Bariátrica/efectos adversos , Grasa Intraabdominal/diagnóstico por imagen , Enfermedades Metabólicas/diagnóstico por imagen , Complicaciones Posoperatorias/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Pérdida de Peso , Adulto , Femenino , Humanos , Masculino
12.
Life Sci ; 258: 118243, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32791154

RESUMEN

AIMS: Although autophagy impairment is a well-established cause of muscle atrophy and P300 has recently been identified as an important regulator of autophagy, the effects of P300 on autophagy and muscle atrophy in type 2 diabetes (T2D) remain unexplored. We aimed at characterizing the role of P300 in diabetic muscle and its underlying mechanism. MAIN METHODS: Protein levels of phosphorylated P300, total P300, acetylated histone H3, LC3, p62 and myosin heavy chain, and mRNA levels of Atrogin-1 and MuRF1 were analyzed in palmitic acid (PA)-treated myotubes and db/db mice. Autophagic flux was assessed using transmission electron microscopy, immunofluorescence and mRFP-GFP-LC3 lentivirus transfection in cells. Muscle weight, blood glucose and grip strength were measured in mice. Hematoxylin and eosin (H&E) staining was performed to determine changes in muscle fiber size. To investigate the effects of P300 on autophagy and myofiber remodeling, a P300 specific inhibitor, c646, was utilized. 3-Methyladenine (3-MA) was utilized to inhibit autophagosomes formation, and chloroquine (CQ) was used to block autophagic flux. KEY FINDINGS: Phosphorylation of P300 in response to PA enhanced its activity and subsequently suppressed autophagic flux, leading to atrophy-related morphological and molecular changes in myotubes. Inhibition of P300 reestablished autophagic flux and ameliorated PA-induced myotubes atrophy. However, this effect was largely abolished by co-treatment with the autophagy inhibitor CQ. In vivo results demonstrated that inhibition of P300 partially rescued muscle wasting in db/db mice, accompanied with autophagy reactivation. SIGNIFICANCE: The findings revealed that T2D-induced overactivation of P300 contributes to muscle atrophy by blocking autophagic flux.


Asunto(s)
Autofagia/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Atrofia Muscular/metabolismo , Animales , Línea Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Proteína p300 Asociada a E1A/genética , Fuerza de la Mano/fisiología , Masculino , Ratones , Ratones Transgénicos , Atrofia Muscular/genética , Atrofia Muscular/patología , Mioblastos/metabolismo , Mioblastos/patología
13.
Exp Gerontol ; 122: 25-33, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31003004

RESUMEN

Sarcopenia is an age-related syndrome characterized by a gradual loss of muscle mass and function, but its pathophysiological mechanism remains unclear. Skeletal muscle extracellular matrix (ECM) remodeling is an important pathological change in sarcopenia, and fibrosis is the most obvious manifestation of this change. We found that the expression of the immunoreceptor Toll-like receptor 9 (TLR9) is significantly increased in skeletal muscle in aged mice and is positively related to muscle fibrosis. Moreover, in previous reports, the longevity gene Sirt1 was reported to attenuate ECM deposition and improve muscle function. In this study, we hypothesized that TLR9 modulated skeletal muscle fibrosis via Sirt1. We used TLR9 knockout (TLR9 KO) mice and C57 mice, and grip strength and body composition were compared at different ages. We found that TLR9 knockout significantly attenuated skeletal muscle fibrosis and improved muscle function in aged mice. Furthermore, silent information regulator 1 (Sirt1) activity in mice was inhibited by Ex527, which is a specific inhibitor of Sirt1. Negative Sirt1 regulation via the activation of TLR9-related signaling pathways participated in skeletal muscle fibrosis in the sarcopenic mice, and this process might mediated by the Sirt1/Smad signaling pathway. Our findings revealed that fibrosis changes in the gastrocnemius muscle in sarcopenic mice are closely related to TLR9 activation, and TLR9 modulation could be a therapeutic strategy for combating sarcopenia during aging.


Asunto(s)
Músculo Esquelético/metabolismo , Sarcopenia/metabolismo , Sirtuina 1/metabolismo , Receptor Toll-Like 9/metabolismo , Envejecimiento , Animales , Composición Corporal , Terapia Combinada , Modelos Animales de Enfermedad , Femenino , Fibrosis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sarcopenia/prevención & control , Transducción de Señal , Sirtuina 1/genética , Receptor Toll-Like 9/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA