Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
Shock ; 60(1): 100-109, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141173

RESUMEN

ABSTRACT: Background: Protein kinase ataxia telangiectasia mutated (ATM) regulates the function of endothelial cells and responds quickly to endotoxin. However, the function of ATM in lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) disruption remains unknown. This study aimed to investigate the role and underlying mechanism of ATM in the regulation of the BBB function in sepsis. Methods: We used LPS to induce BBB disruption in vivo and to establish an in vitro model of cerebrovascular endothelial cells. Blood-brain barrier disruption was assessed by measuring Evans blue leakage and expression of vascular permeability regulators. To investigate the role of ATM, its inhibitor AZD1390 and clinically approved doxorubicin, an anthracycline that can activate ATM, were administered as scheduled. To explore the underlying mechanism, protein kinase B (AKT) inhibitor MK-2206 was administered to block the AKT/dynamin-related protein 1 (DRP1) pathway. Results: Lipopolysaccharide challenge induced significant BBB disruption, ATM activation, and mitochondrial translocation. Inhibiting ATM with AZD1390 aggravated BBB permeability as well as the following neuroinflammation and neuronal injury, while activation of ATM by doxorubicin abrogated these defects. Further results obtained in brain microvascular endothelial cells showed that ATM inhibition reduced the phosphorylation of DRP1 at serine (S) 637, promoted excessive mitochondrial fission, and resulted in mitochondrial malfunction. By activating ATM, doxorubicin increased the protein binding between ATM and AKT and promoted the phosphorylated activation of AKT at S473, which could directly phosphorylate DRP1 at S637 to repress excessive mitochondrial fission. Consistently, the protective role of ATM was abolished by the AKT inhibitor MK-2206. Conclusions: Ataxia telangiectasia mutated protects against LPS-induced BBB disruption by regulating mitochondrial homeostasis, at least in part, through the AKT/DRP1 pathway.


Asunto(s)
Ataxia Telangiectasia , Barrera Hematoencefálica , Humanos , Barrera Hematoencefálica/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Ataxia Telangiectasia/metabolismo , Células Endoteliales/metabolismo , Fosforilación , Homeostasis , Dinaminas , Doxorrubicina/metabolismo , Dinámicas Mitocondriales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA