Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Med Internet Res ; 26: e53162, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913991

RESUMEN

BACKGROUND: Comprehensive management of multimorbidity can significantly benefit from advanced health risk assessment tools that facilitate value-based interventions, allowing for the assessment and prediction of disease progression. Our study proposes a novel methodology, the Multimorbidity-Adjusted Disability Score (MADS), which integrates disease trajectory methodologies with advanced techniques for assessing interdependencies among concurrent diseases. This approach is designed to better assess the clinical burden of clusters of interrelated diseases and enhance our ability to anticipate disease progression, thereby potentially informing targeted preventive care interventions. OBJECTIVE: This study aims to evaluate the effectiveness of the MADS in stratifying patients into clinically relevant risk groups based on their multimorbidity profiles, which accurately reflect their clinical complexity and the probabilities of developing new associated disease conditions. METHODS: In a retrospective multicentric cohort study, we developed the MADS by analyzing disease trajectories and applying Bayesian statistics to determine disease-disease probabilities combined with well-established disability weights. We used major depressive disorder (MDD) as a primary case study for this evaluation. We stratified patients into different risk levels corresponding to different percentiles of MADS distribution. We statistically assessed the association of MADS risk strata with mortality, health care resource use, and disease progression across 1 million individuals from Spain, the United Kingdom, and Finland. RESULTS: The results revealed significantly different distributions of the assessed outcomes across the MADS risk tiers, including mortality rates; primary care visits; specialized care outpatient consultations; visits in mental health specialized centers; emergency room visits; hospitalizations; pharmacological and nonpharmacological expenditures; and dispensation of antipsychotics, anxiolytics, sedatives, and antidepressants (P<.001 in all cases). Moreover, the results of the pairwise comparisons between adjacent risk tiers illustrate a substantial and gradual pattern of increased mortality rate, heightened health care use, increased health care expenditures, and a raised pharmacological burden as individuals progress from lower MADS risk tiers to higher-risk tiers. The analysis also revealed an augmented risk of multimorbidity progression within the high-risk groups, aligned with a higher incidence of new onsets of MDD-related diseases. CONCLUSIONS: The MADS seems to be a promising approach for predicting health risks associated with multimorbidity. It might complement current risk assessment state-of-the-art tools by providing valuable insights for tailored epidemiological impact analyses of clusters of interrelated diseases and by accurately assessing multimorbidity progression risks. This study paves the way for innovative digital developments to support advanced health risk assessment strategies. Further validation is required to generalize its use beyond the initial case study of MDD.


Asunto(s)
Multimorbilidad , Humanos , Estudios Retrospectivos , Femenino , Masculino , Persona de Mediana Edad , Medición de Riesgo/métodos , Adulto , Anciano , España , Trastorno Depresivo Mayor/epidemiología , Teorema de Bayes , Progresión de la Enfermedad , Reino Unido , Depresión/epidemiología , Finlandia/epidemiología
2.
Mol Ecol ; 27(11): 2560-2575, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29691916

RESUMEN

Elucidating the genetic basis of adaptation to the local environment can improve our understanding of how the diversity of life has evolved. In this study, we used a dense SNP array to identify candidate loci potentially underlying fine-scale local adaptation within a large Atlantic salmon (Salmo salar) population. By combining outlier, gene-environment association and haplotype homozygosity analyses, we identified multiple regions of the genome with strong evidence for diversifying selection. Several of these candidate regions had previously been identified in other studies, demonstrating that the same loci could be adaptively important in Atlantic salmon at subdrainage, regional and continental scales. Notably, we identified signals consistent with local selection around genes associated with variation in sexual maturation, energy homeostasis and immune defence. These included the large-effect age-at-maturity gene vgll3, the known obesity gene mc4r, and major histocompatibility complex II. Most strikingly, we confirmed a genomic region on Ssa09 that was extremely differentiated among subpopulations and that is also a candidate for local selection over the global range of Atlantic salmon. This region colocalized with a haplotype strongly associated with spawning ecotype in sockeye salmon (Oncorhynchus nerka), with circumstantial evidence that the same gene (six6) may be the selective target in both cases. The phenotypic effect of this region in Atlantic salmon remains cryptic, although allelic variation is related to upstream catchment area and covaries with timing of the return spawning migration. Our results further inform management of Atlantic salmon and open multiple avenues for future research.


Asunto(s)
Salmo salar/genética , Maduración Sexual/genética , Animales , Ecotipo , Genética de Población/métodos , Genoma/genética , Genómica/métodos , Genotipo , Homeostasis/genética , Polimorfismo de Nucleótido Simple/genética , Selección Genética/genética
3.
Nature ; 491(7426): 756-60, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23103876

RESUMEN

Unravelling the genomic landscape of divergence between lineages is key to understanding speciation. The naturally hybridizing collared flycatcher and pied flycatcher are important avian speciation models that show pre- as well as postzygotic isolation. We sequenced and assembled the 1.1-Gb flycatcher genome, physically mapped the assembly to chromosomes using a low-density linkage map and re-sequenced population samples of each species. Here we show that the genomic landscape of species differentiation is highly heterogeneous with approximately 50 'divergence islands' showing up to 50-fold higher sequence divergence than the genomic background. These non-randomly distributed islands, with between one and three regions of elevated divergence per chromosome irrespective of chromosome size, are characterized by reduced levels of nucleotide diversity, skewed allele-frequency spectra, elevated levels of linkage disequilibrium and reduced proportions of shared polymorphisms in both species, indicative of parallel episodes of selection. Proximity of divergence peaks to genomic regions resistant to sequence assembly, potentially including centromeres and telomeres, indicate that complex repeat structures may drive species divergence. A much higher background level of species divergence of the Z chromosome, and a lower proportion of shared polymorphisms, indicate that sex chromosomes and autosomes are at different stages of speciation. This study provides a roadmap to the emerging field of speciation genomics.


Asunto(s)
Especiación Genética , Genoma/genética , Pájaros Cantores/genética , Animales , Biodiversidad , Centrómero/genética , Cromosomas/genética , Frecuencia de los Genes , Variación Genética , Genómica , Masculino , Datos de Secuencia Molecular , Filogenia , Selección Genética/genética , Pájaros Cantores/clasificación , Especificidad de la Especie , Telómero/genética
4.
Mol Ecol ; 25(9): 2015-28, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26928872

RESUMEN

Relatively little is known about the character of gene expression evolution as species diverge. It is for instance unclear if gene expression generally evolves in a clock-like manner (by stabilizing selection or neutral evolution) or if there are frequent episodes of directional selection. To gain insights into the evolutionary divergence of gene expression, we sequenced and compared the transcriptomes of multiple organs from population samples of collared (Ficedula albicollis) and pied flycatchers (F. hypoleuca), two species which diverged less than one million years ago. Ordination analysis separated samples by organ rather than by species. Organs differed in their degrees of expression variance within species and expression divergence between species. Variance was negatively correlated with expression breadth and protein interactivity, suggesting that pleiotropic constraints reduce gene expression variance within species. Variance was correlated with between-species divergence, consistent with a pattern expected from stabilizing selection and neutral evolution. Using an expression PST approach, we identified genes differentially expressed between species and found 16 genes uniquely expressed in one of the species. For one of these, DPP7, uniquely expressed in collared flycatcher, the absence of expression in pied flycatcher could be associated with a ≈20-kb deletion including 11 of 13 exons. This study of a young vertebrate speciation model system expands our knowledge of how gene expression evolves as natural populations become reproductively isolated.


Asunto(s)
Evolución Biológica , Flujo Genético , Selección Genética , Pájaros Cantores/clasificación , Animales , Femenino , Expresión Génica , Pleiotropía Genética , Genética de Población , Masculino , Modelos Genéticos , Pájaros Cantores/genética , Especificidad de la Especie , Suecia
5.
J Hered ; 107(1): 82-9, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26297731

RESUMEN

Understanding how populations adapt to changing environmental conditions is a long-standing theme in evolutionary biology. Gene expression changes have been recognized as an important driver of local adaptation, but relatively little is known regarding the direction of change and in particular, about the interplay between plastic and evolutionary gene expression. We have previously shown that the gene expression profiles of European grayling (Thymallus thymallus) populations inhabiting different thermal environments include both plastic and evolutionary components. However, whether the plastic and evolutionary responses were in the same direction was not investigated in detail, nor was the identity of the specific genes involved. In this study, we show that the plastic changes in protein expression in response to different temperatures are highly correlated with the evolutionary response in grayling subpopulations adapted to different thermal environments. This finding provides preliminary evidence that the plastic response most likely facilitates adaptation during the early phases of colonization of thermal environments. The proteins that showed significant changes in expression level between warm and cold temperature treatments were mostly related to muscle development, which is consistent with earlier findings demonstrating muscle mass differentiation between cold and warm grayling populations.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Ambiente , Genética de Población , Salmonidae/genética , Temperatura , Animales , Expresión Génica , Lagos , Noruega , Fenotipo , Proteoma/genética
6.
Epigenetics ; 17(6): 625-641, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34369261

RESUMEN

Anthropogenic pollution is known to negatively influence an organism's physiology, behaviour, and fitness. Epigenetic regulation, such as DNA methylation, has been hypothesized as a potential mechanism to mediate such effects, yet studies in wild species are lacking. We first investigated the effects of early-life exposure to the heavy metal lead (Pb) on DNA methylation levels in a wild population of great tits (Parus major), by experimentally exposing nestlings to Pb at environmentally relevant levels. Secondly, we compared nestling DNA methylation from a population exposed to long-term heavy metal pollution (close to a copper smelter), where birds suffer from pollution-related decrease in food quality, and a control population. For both comparisons, the analysis of about one million CpGs covering most of the annotated genes revealed that pollution-related changes in DNA methylation were not genome wide, but enriched for genes underlying developmental processes. However, the results were not consistent when using binomial or beta binomial regression highlighting the difficulty of modelling variance in CpGs. Our study indicates that post-natal anthropogenic heavy metal exposure can affect methylation levels of development related genes in a wild bird population.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Passeriformes , Animales , Metilación de ADN , Contaminantes Ambientales/toxicidad , Epigénesis Genética , Plomo/toxicidad , Metales Pesados/toxicidad , Passeriformes/genética
7.
Ecol Evol ; 12(11): e9539, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36447599

RESUMEN

Parasites can exert strong selective pressures on their hosts and influence the evolution of host immunity. While several studies have examined the genetic basis for parasite resistance, the role of epigenetics in the immune response to parasites is less understood. Yet, epigenetic modifications, such as changes in DNA methylation, may allow species to respond rapidly to parasite prevalence or virulence. To test the role of DNA methylation in relation to parasite infection, we examined genome-wide DNA methylation before and during infection by a parasitic nematode, Syngamus trachea, in a natural population of house sparrows (Passer domesticus) using reduced representation bisulfite sequencing (RRBS). We found that DNA methylation levels were slightly lower in infected house sparrows, and we identified candidate genes relating to the initial immune response, activation of innate and adaptive immunity, and mucus membrane functional integrity that were differentially methylated between infected and control birds. Subsequently, we used methylation-sensitive high-resolution melting (MS-HRM) analyses to verify the relationship between methylation proportion and S. trachea infection status at two candidate genes in a larger sample dataset. We found that methylation level at NR1D1, but not CLDN22, remained related to infection status and that juvenile recruitment probability was positively related to methylation level at NR1D1. This underscores the importance of performing follow-up studies on candidate genes. Our findings demonstrate that plasticity in the immune response to parasites can be epigenetically mediated and highlight the potential for epigenetic studies in natural populations to provide further mechanistic insight into host-parasite interactions.

8.
Genetics ; 178(1): 453-65, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18202387

RESUMEN

Identification of genes and genomic regions under directional natural selection has become one of the major goals in evolutionary genetics, but relatively little work to this end has been done by applying hitchhiking mapping to wild populations. Hitchhiking mapping starts from a genome scan using a randomly spaced set of molecular markers followed by a fine-scale analysis in the flanking regions of the candidate regions under selection. We used the hitchhiking mapping approach to narrow down a selective sweep in the genomic region flanking a candidate locus (Stn90) in chromosome VIII in the three-spined stickleback (Gasterosteus aculeatus). Twenty-four microsatellite markers were screened in an approximately 800-kb region around the candidate locus in three marine and four freshwater populations. The patterns of genetic diversity and differentiation in the candidate region were compared to those of a putatively neutral set of markers. The Bayesian FST-test indicated an elevated genetic differentiation, deviating significantly from neutral expectations, at a continuous region of approximately 20 kb upstream from the candidate locus. Furthermore, a method developed for an array of microsatellite markers rejected neutrality in a region of approximately 90 kb flanking the candidate locus supporting the selective sweep hypothesis. Likewise, the genomewide pattern of genetic diversity differed from the candidate region in a bottleneck analysis suggesting that selection, rather than demography, explains the reduced genetic diversity at the candidate interval. The neutrality tests suggest that the selective sweep had occurred mainly in the Lake Pulmanki population, but the results from bottleneck analyses indicate that selection might have operated in other populations as well. These results suggest that the narrow interval around locus Stn90 has likely been under directional selection, but the region contains several predicted genes, each of which can be the actual targets of selection. Understanding of the functional significance of this genomic region in an ecological context will require a more detailed sequence analysis.


Asunto(s)
Cromosomas/genética , Genoma/genética , Mapeo Físico de Cromosoma , Selección Genética , Smegmamorpha/genética , Animales , Teorema de Bayes , Bases de Datos de Ácidos Nucleicos , Proteínas de Peces/química , Proteínas de Peces/genética , Geografía , Dinámica Poblacional , Homología de Secuencia de Aminoácido
9.
Sci Data ; 6(1): 136, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31341168

RESUMEN

Seasonal timing of reproduction is an important fitness trait in many plants and animals but the underlying molecular mechanism for this trait is poorly known. DNA methylation is known to affect timing of reproduction in various organisms and is therefore a potential mechanism also in birds. Here we describe genome wide data aiming to detect temporal changes in methylation in relation to timing of breeding using artificial selection lines of great tits (Parus major) exposed to contrasting temperature treatments. Methylation levels of DNA extracted from erythrocytes were examined using reduced representation bisulfite sequencing (RRBS). In total, we obtained sequencing data from 63 libraries over four different time points from 16 birds with on average 20 million quality filtered reads per library. These data describe individual level temporal variation in DNA methylation throughout the breeding season under experimental temperature regimes and provides a resource for future studies investigating the role of temporal changes in DNA methylation in timing of reproduction.


Asunto(s)
Metilación de ADN , Passeriformes/genética , Reproducción/genética , Temperatura , Animales , Cruzamiento , Femenino , Estaciones del Año , Análisis de Secuencia de ADN
10.
Evol Lett ; 2(2): 126-133, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30283670

RESUMEN

The ability of a parasite strain to establish and grow on its host may be drastically altered by simultaneous infection by other parasite strains. However, we still lack an understanding of how life-history allocations may change under coinfection, although life-history correlations are a critical mechanism restricting the evolutionary potential and epidemiological dynamics of pathogens. Here, we study how life-history stages and their correlations change in the obligate fungal pathogen Podosphaera plantaginis under single infection and coinfection scenarios. We find increased pathogen loads under coinfection, but this is not explained by an enhanced performance at any of the life-history stages that constitute infections. Instead, we show that under coinfection the correlation between timing of sporulation and final pathogen load becomes positive. The changes in pathogen life-history allocations leading to more severe infections under coinfection can have far-reaching epidemiological consequences, as well as implication for our understanding of the evolution of virulence.

11.
Genome Biol Evol ; 10(1): 77-93, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29293993

RESUMEN

Gene expression changes have been recognized as important drivers of adaptation to changing environmental conditions. Little is known about the relative roles of plastic and evolutionary responses in complex gene expression networks during the early stages of divergence. Large gene expression data sets coupled with in silico methods for identifying coexpressed modules now enable systems genetics approaches also in nonmodel species for better understanding of gene expression responses during early divergence. Here, we combined gene coexpression analyses with population genetics to separate plastic and population (evolutionary) effects in expression networks using small salmonid populations as a model system. We show that plastic and population effects were highly variable among the six identified modules and that the plastic effects explained larger proportion of the total eigengene expression than population effects. A more detailed analysis of the population effects using a QST - FST comparison across 16,622 annotated transcripts revealed that gene expression followed neutral expectations within modules and at the global level. Furthermore, two modules showed enrichment for genes coding for early developmental traits that have been previously identified as important phenotypic traits in thermal responses in the same model system indicating that coexpression analysis can capture expression patterns underlying ecologically important traits. We suggest that module-specific responses may facilitate the flexible tuning of expression levels to local thermal conditions. Overall, our study indicates that plasticity and neutral evolution are the main drivers of gene expression variance in the early stages of thermal adaptation in this system.


Asunto(s)
Evolución Biológica , Regulación de la Expresión Génica , Salmonidae/genética , Aclimatación , Animales , Redes Reguladoras de Genes , Flujo Genético , Genética de Población , Salmonidae/fisiología , Selección Genética , Temperatura
12.
Ecol Evol ; 7(11): 3826-3835, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28616179

RESUMEN

Both effective population size and life history may influence the efficacy of purifying selection, but it remains unclear if the environment affects the accumulation of weakly deleterious nonsynonymous polymorphisms. We hypothesize that the reduced energetic cost of osmoregulation in brackish water habitat may cause relaxation of selective constraints at mitochondrial oxidative phosphorylation (OXPHOS) genes. To test this hypothesis, we analyzed 57 complete mitochondrial genomes of Pungitius pungitius collected from brackish and freshwater habitats. Based on inter- and intraspecific comparisons, we estimated that 84% and 68% of the nonsynonymous polymorphisms in the freshwater and brackish water populations, respectively, are weakly or moderately deleterious. Using in silico prediction tools (MutPred, SNAP2), we subsequently identified nonsynonymous polymorphisms with potentially harmful effect. Both prediction methods indicated that the functional effects of the fixed nonsynonymous substitutions between nine- and three-spined stickleback were weaker than for polymorphisms within species, indicating that harmful nonsynonymous polymorphisms within populations rarely become fixed between species. No significant differences in mean estimated functional effects were identified between freshwater and brackish water nine-spined stickleback to support the hypothesis that reduced osmoregulatory energy demand in the brackish water environment reduces the strength of purifying selection at OXPHOS genes. Instead, elevated frequency of nonsynonymous polymorphisms in the freshwater environment (Pn/Ps = 0.549 vs. 0.283; Fisher's exact test p = .032) suggested that purifying selection is less efficient in small freshwater populations. This study shows the utility of in silico functional prediction tools in population genetic and evolutionary research in a nonmammalian vertebrate and demonstrates that mitochondrial energy production genes represent a promising system to characterize the demographic, life history and potential habitat-dependent effects of segregating amino acid variants.

13.
Int J Parasitol ; 46(9): 545-54, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27155331

RESUMEN

We examined the global mitochondrial phylogeography of Gyrodactylus arcuatus, a flatworm ectoparasite of three-spined stickleback Gasterosteus aculeatus. In accordance with the suggested high divergence rate of 13%/million years, the genetic variation of the parasite was high: haplotype diversity h=0.985 and nucleotide diversity π=0.0161. The differentiation among the parasite populations was substantial (Φst=0.759), with two main allopatric clades (here termed Euro and North) accounting for 54% of the total genetic variation. The diversity center of the Euro clade was in the Baltic Sea, while the North clade was spread across the Barents and White Seas. A single haplotype within the North clade was found in the western and eastern Pacific Ocean. Divergence of main clades was estimated to be circa 200 thousand years ago. Each main clade was further divided into six distinct subclades, estimated to have diverged in isolation since 135 thousand years ago. This second division corresponds approximately to the Eemian interglacial predating the last glacial maximum. A demographic expansion of the subclades is associated with colonisation of northern Europe since the last glacial maximum, circa 15-40 thousand years ago. The parasite phylogeny is most likely explained by sequential isolated bottlenecks and expansions in numerous allopatric refugia. The postglacial intermingling and high variation in the marine parasite populations, separately in the Baltic and Barents Seas, suggest low competition of divergent parasite matrilines, coupled with a large population size and high rate of dispersal of hosts. The genetic contribution of the assumed refugial fish populations maintaining the parasite during the last glacial maximum was not detected among the marine sticklebacks, which perhaps were infected after range expansion.


Asunto(s)
Agua Dulce/parasitología , Platelmintos/clasificación , Platelmintos/genética , Smegmamorpha/parasitología , Animales , ADN Mitocondrial/genética , Europa (Continente) , Evolución Molecular , Haplotipos , Océano Pacífico , Filogenia , Filogeografía , Platelmintos/patogenicidad , Refugio de Fauna
14.
Evol Appl ; 8(1): 93-107, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25667605

RESUMEN

Domestication can have adverse genetic consequences, which may reduce the fitness of individuals once released back into the wild. Many wild Atlantic salmon (Salmo salarL.) populations are threatened by anthropogenic influences, and they are supplemented with captively bred fish. The Atlantic salmon is also widely used in selective breeding programs to increase the mean trait values for desired phenotypic traits. We analyzed a genomewide set of SNPs in three domesticated Atlantic salmon strains and their wild conspecifics to identify loci underlying domestication. The genetic differentiation between domesticated strains and wild populations was low (F ST < 0.03), and domesticated strains harbored similar levels of genetic diversity compared to their wild conspecifics. Only a few loci showed footprints of selection, and these loci were located in different linkage groups among the different wild population/hatchery strain comparisons. Simulated scenarios indicated that differentiation in quantitative trait loci exceeded that in neutral markers during the early phases of divergence only when the difference in the phenotypic optimum between populations was large. This study indicates that detecting selection using standard approaches in the early phases of domestication might be challenging unless selection is strong and the traits under selection show simple inheritance patterns.

15.
Genome Biol Evol ; 5(8): 1555-66, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23925789

RESUMEN

Sex chromosome divergence, which follows the cessation of recombination and degeneration of the sex-limited chromosome, can cause a reduction in expression level for sex-linked genes in the heterozygous sex, unless some mechanisms of dosage compensation develops to counter the reduction in gene dose. Because large-scale perturbations in expression levels arising from changes in gene dose might have strong deleterious effects, the evolutionary response should be strong. However, in birds and in at least some other female heterogametic organisms, wholesale sex chromosome dosage compensation does not seem to occur. Using RNA-seq of multiple tissues and individuals, we investigated male and female expression levels of Z-linked and autosomal genes in the collared flycatcher, a bird for which a draft genome sequence recently has been reported. We found that male expression of Z-linked genes was on average 50% higher than female expression, although there was considerable variation in the male-to-female ratio among genes. The ratio for individual genes was well correlated among tissues and there was also a correlation in the extent of compensation between flycatcher and chicken orthologs. The relative excess of male expression was positively correlated with expression breadth, expression level, and number of interacting proteins (protein connectivity), and negatively correlated with variance in expression. These observations lead to a model of compensation occurring on a gene-by-gene basis, supported by an absence of clustering of genes on the Z chromosome with respect to the extent of compensation. Equal mean expression level of autosomal and Z-linked genes in males, and 50% higher expression of autosomal than Z-linked genes in females, is compatible with that partial compensation is achieved by hypertranscription from females' single Z chromosome. A comparison with male-to-female expression ratios in orthologous Z-linked genes of ostriches, where Z-W recombination still occurs, suggests that male-biased expression of Z-linked genes is a derived trait after avian sex chromosome divergence.


Asunto(s)
Compensación de Dosificación (Genética) , Cromosomas Sexuales , Pájaros Cantores/genética , Transcriptoma , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Pollos , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Masculino , Caracteres Sexuales , Cromosomas Sexuales/genética , Cromosomas Sexuales/metabolismo , Pájaros Cantores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA