Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(35): 17169-17174, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31413203

RESUMEN

Hydrophobic base stacking is a major contributor to DNA double-helix stability. We report the discovery of specific unstacking effects in certain semihydrophobic environments. Water-miscible ethylene glycol ethers are found to modify structure, dynamics, and reactivity of DNA by mechanisms possibly related to a biologically relevant hydrophobic catalysis. Spectroscopic data and optical tweezers experiments show that base-stacking energies are reduced while base-pair hydrogen bonds are strengthened. We propose that a modulated chemical potential of water can promote "longitudinal breathing" and the formation of unstacked holes while base unpairing is suppressed. Flow linear dichroism in 20% diglyme indicates a 20 to 30% decrease in persistence length of DNA, supported by an increased flexibility in single-molecule nanochannel experiments in poly(ethylene glycol). A limited (3 to 6%) hyperchromicity but unaffected circular dichroism is consistent with transient unstacking events while maintaining an overall average B-DNA conformation. Further information about unstacking dynamics is obtained from the binding kinetics of large thread-intercalating ruthenium complexes, indicating that the hydrophobic effect provides a 10 to 100 times increased DNA unstacking frequency and an "open hole" population on the order of 10-2 compared to 10-4 in normal aqueous solution. Spontaneous DNA strand exchange catalyzed by poly(ethylene glycol) makes us propose that hydrophobic residues in the L2 loop of recombination enzymes RecA and Rad51 may assist gene recombination via modulation of water activity near the DNA helix by hydrophobic interactions, in the manner described here. We speculate that such hydrophobic interactions may have catalytic roles also in other biological contexts, such as in polymerases.


Asunto(s)
ADN Forma B/química , Polietilenglicoles/química , Rutenio/química , Catálisis , Pinzas Ópticas
2.
Phys Chem Chem Phys ; 23(3): 2238-2244, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33439155

RESUMEN

The enantiomers of a novel mononuclear ruthenium(ii) complex [Ru(phen)2bidppz]2+ with an elongated dppz moiety were synthesized. Surprisingly, the complex showed no DNA intercalating capability in an aqueous environment. However, by the addition of water-miscible polyethylene glycol ether PEG-400, self-aggregation of the hydrophobic ruthenium(ii) complexes was counter-acted, thus strongly promoting the DNA intercalation binding mode. This mild alteration of the environment surrounding the DNA polymer does not damage or alter the DNA structure but instead enables more efficient binding characterization studies of potential DNA binding drugs.


Asunto(s)
Complejos de Coordinación/química , ADN/química , Sustancias Intercalantes/química , Polietilenglicoles/química , Interacciones Hidrofóbicas e Hidrofílicas , Rutenio/química , Estereoisomerismo
3.
Inorg Chem ; 58(14): 9452-9459, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31247836

RESUMEN

The biexponential excited-state emission decay characteristic of DNA intercalated tris-bidentate dppz-based ruthenium complexes of the general form Ru(L)2dppz2+ has previously been explained by a binding model with two distinct geometry orientations of the bound ligands, with a distinct lifetime associated with each orientation. However, it has been found that upon DNA binding of Ru(phen)2dppz2+ the fractions of short and long lifetimes are strongly dependent on environmental factors such as salt concentration and, in particular, temperature. Analyzing isothermal titration calorimetry for competitive binding of Ru(phen)2dppz2+ enantiomers to poly(dAdT)2, we find that a consistent binding model must assume that the short and long lifetimes states of intercalated complexes are in equilibrium and that this equilibrium is altered when neighboring bound ligands affect each other. The degree of intercomplex binding is found to be a subtle manifestation of several attractive and repulsive factors that are highly likely to directly reflect the strong diastereomeric difference in the binding enthalpy and entropy values. In addition, as the titration progresses and the binding sites on the DNA lattice become increasingly occupied, a general resistance for the saturation of the binding sites is observed, suggesting diastereomeric crowding of the neighboring bound ligands.


Asunto(s)
Complejos de Coordinación/química , ADN/química , Sustancias Intercalantes/química , Modelos Moleculares , Estructura Molecular , Fenantrolinas/química , Rutenio/química
4.
Phys Chem Chem Phys ; 20(16): 11336-11341, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29644359

RESUMEN

Isothermal titration calorimetry (ITC) has been utilized to investigate the effect of methyl substituents on the intercalating dppz ligand of the enantiomers of the parent complex Ru(phen)2dppz2+ (phen = 1,10-phenanthroline; dppz = dipyrido[3,2-a:2',3'-c]phenazine) on DNA binding thermodynamics. The methylated complexes (10-methyl-dppz and 11,12-dimethyl-dppz) have large, concentration-dependent, positive heats of dilution, and a strong endothermic background is also apparent in the ITC-profiles from titration of methylated complexes into poly(dAdT)2, which make direct comparison between complexes difficult. By augmenting a simple cooperative binding model with one equilibrium for complex self-aggregation in solution and one equilibrium for complex aggregation on saturated DNA, it was possible to find an excellent global fit to the experimental data with DNA affinity parameters restricted to be equal for all Δ-enantiomers as well as for all Λ-enantiomers. In general, enthalpic differences, compared to the unsubstituted complex, were small and less than 4 kJ mol-1, except for the heat of intercalation of Δ-10-methyl-dppz (-11,6 kJ mol-1) and Λ-11,12-dimethyl-dppz (+4.3 kJ mol-1).


Asunto(s)
Complejos de Coordinación/química , ADN/química , Sustancias Intercalantes/química , Rutenio/química , Calorimetría , Interacciones Hidrofóbicas e Hidrofílicas , Metilación , Modelos Químicos , Fenantrolinas/química , Fenazinas/química , Estereoisomerismo , Termodinámica
5.
Phys Chem Chem Phys ; 20(12): 7920-7930, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29308462

RESUMEN

While isothermal titration calorimetry (ITC) is widely used and sometimes referred to as the "gold standard" for quantitative measurements of biomolecular interactions, its usage has so far been limited to the analysis of the binding to isolated, non-cooperative binding sites. Studies on more complicated systems, where the binding sites interact, causing either cooperativity or anti-cooperativity between neighboring bound ligands, are rare, probably due to the complexity of the methods currently available. Here we have developed a simple algorithm not limited by the complexity of a binding system, meaning that it can be implemented by anyone, from analyzing systems of simple, isolated binding sites to complicated interactive multiple-site systems. We demonstrate here that even complicated competitive binding calorimetric isotherms can be properly analyzed, provided that ligand-ligand interactions are taken into account. As a practical example, the competitive binding interactions between the two enantiomers of Ru(bpy)2dppz2+ (Ru-bpy) and poly(dAdT)2 (AT-DNA) are analyzed using our new algorithm, which provided an excellent global fit for the ITC experimental data.


Asunto(s)
Calorimetría/métodos , Complejos de Coordinación/química , ADN/química , Rutenio/química , Algoritmos , Sitios de Unión , Ligandos , Estereoisomerismo , Termodinámica
6.
Chirality ; 28(11): 713-720, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27791316

RESUMEN

Metal susceptibility assays and spot plating were used to investigate the antimicrobial activity of enantiopure [Ru(phen)2 dppz]2+ (phen =1,10-phenanthroline and dppz = dipyrido[3,2-a:2´,3´-c]phenazine) and [µ-bidppz(phen)4 Ru2 ]4+ (bidppz =11,11´-bis(dipyrido[3,2-a:2´,3´-c]phenazinyl)), on Gram-negative Escherichia coli and Gram-positive Bacillus subtilis as bacterial models. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) were determined for both complexes: while [µ-bidppz(phen)4 Ru2 ]4+ only showed a bactericidal effect at the highest concentrations tested, the antimicrobial activity of [Ru(phen)2 dppz]2+ against B. subtilis was comparable to that of tetracyline. In addition, the Δ-enantiomer of [Ru(phen)2 dppz]2+ showed a 2-fold higher bacteriostatic and bactericidal effect compared to the Λ-enantiomer. This was in accordance with the enantiomers relative binding affinity for DNA, thus strongly indicating DNA binding as the mode of action.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Rutenio/química , Bacillus subtilis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Compuestos Organometálicos/química , Fenantrolinas/química , Rutenio/farmacología , Estereoisomerismo
7.
J Endocr Soc ; 6(11): bvac132, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36249410

RESUMEN

Androgen deprivation therapy of prostate cancer, which suppresses serum testosterone to castrate levels, is associated with increased risk of heart failure. Here we tested the hypothesis that castration alters cardiac energy substrate uptake, which is tightly coupled to the regulation of cardiac structure and function. Short-term (3-4 weeks) surgical castration of male mice reduced the relative heart weight. While castration did not affect cardiac function in unstressed conditions, we observed reductions in heart rate, stroke volume, cardiac output, and cardiac index during pharmacological stress with dobutamine in castrated vs sham-operated mice. Experiments using radiolabeled lipoproteins and glucose showed that castration shifted energy substrate uptake in the heart from lipids toward glucose, while testosterone replacement had the opposite effect. There was increased expression of fetal genes in the heart of castrated mice, including a strong increase in messenger RNA and protein levels of ß-myosin heavy chain (MHC), the fetal isoform of MHC. In conclusion, castration of male mice induces metabolic remodeling and expression of the fetal gene program in the heart, in association with a reduced cardiac performance during pharmacological stress. These findings may be relevant for the selection of treatment strategies for heart failure in the setting of testosterone deficiency.

8.
Dalton Trans ; 44(8): 3604-13, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25406791

RESUMEN

Linear and circular dichroism (LD and CD) spectroscopy as well as isothermal titration calorimetry (ITC) have been used to investigate the interaction of Ru(tpy)(py)dppz(2+) (tpy = 2,2':6',2''-terpyridyl; py = pyridine; dppz = dipyrido[3,2-a:2'3'-c]phenazine) with DNA, providing detailed information about the DNA binding thermodynamics and binding geometry of the metal complex. Flow LD, CD and isotropic absorption indicate that Ru(tpy)(py)dppz(2+) bind to DNA from the minor groove with the dppz ligand intercalated between base pairs, very similar to its chiral structural isomers Δ- and Λ-Ru(bpy)2dppz(2+) (bpy = 2,2'-bipyridine). A simple cooperative binding model with one binding geometry provide an excellent fit for calorimetric and absorption titration data. The values of the neighbor interaction thermodynamic parameters for Ru(tpy)(py)dppz(2+) suggest that complexes bound contiguously prefer to have their tpy ligands oriented towards the same strand.


Asunto(s)
Complejos de Coordinación/química , ADN/química , Rutenio/química , 2,2'-Dipiridil/química , Calorimetría , Dicroismo Circular , Complejos de Coordinación/síntesis química , Fenazinas/química , Estereoisomerismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA