RESUMEN
The current dogma of RNA-mediated innate immunity is that sensing of immunostimulatory RNA ligands is sufficient for the activation of intracellular sensors and induction of interferon (IFN) responses. Here, we report that actin cytoskeleton disturbance primes RIG-I-like receptor (RLR) activation. Actin cytoskeleton rearrangement induced by virus infection or commonly used reagents to intracellularly deliver RNA triggers the relocalization of PPP1R12C, a regulatory subunit of the protein phosphatase-1 (PP1), from filamentous actin to cytoplasmic RLRs. This allows dephosphorylation-mediated RLR priming and, together with the RNA agonist, induces effective RLR downstream signaling. Genetic ablation of PPP1R12C impairs antiviral responses and enhances susceptibility to infection with several RNA viruses including SARS-CoV-2, influenza virus, picornavirus, and vesicular stomatitis virus. Our work identifies actin cytoskeleton disturbance as a priming signal for RLR-mediated innate immunity, which may open avenues for antiviral or adjuvant design.
Asunto(s)
Actinas , COVID-19 , Citoesqueleto de Actina , Antivirales , Humanos , Interferones , Ligandos , Proteína Fosfatasa 1 , ARN , ARN Helicasas , Receptores de Ácido Retinoico/metabolismo , SARS-CoV-2RESUMEN
Long COVID (LC) occurs after at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, yet its etiology remains poorly understood. We used 'omic" assays and serology to deeply characterize the global and SARS-CoV-2-specific immunity in the blood of individuals with clear LC and non-LC clinical trajectories, 8 months postinfection. We found that LC individuals exhibited systemic inflammation and immune dysregulation. This was evidenced by global differences in T cell subset distribution implying ongoing immune responses, as well as by sex-specific perturbations in cytolytic subsets. LC individuals displayed increased frequencies of CD4+ T cells poised to migrate to inflamed tissues and exhausted SARS-CoV-2-specific CD8+ T cells, higher levels of SARS-CoV-2 antibodies and a mis-coordination between their SARS-CoV-2-specific T and B cell responses. Our analysis suggested an improper crosstalk between the cellular and humoral adaptive immunity in LC, which can lead to immune dysregulation, inflammation and clinical symptoms associated with this debilitating condition.
Asunto(s)
COVID-19 , SARS-CoV-2 , Femenino , Masculino , Humanos , Síndrome Post Agudo de COVID-19 , Linfocitos T CD8-positivos , Inmunidad Humoral , Anticuerpos Antivirales , InflamaciónRESUMEN
The global spread of SARS-CoV-2/COVID-19 is devastating health systems and economies worldwide. Recombinant or vaccine-induced neutralizing antibodies are used to combat the COVID-19 pandemic. However, the recently emerged SARS-CoV-2 variants B.1.1.7 (UK), B.1.351 (South Africa), and P.1 (Brazil) harbor mutations in the viral spike (S) protein that may alter virus-host cell interactions and confer resistance to inhibitors and antibodies. Here, using pseudoparticles, we show that entry of all variants into human cells is susceptible to blockade by the entry inhibitors soluble ACE2, Camostat, EK-1, and EK-1-C4. In contrast, entry of the B.1.351 and P.1 variant was partially (Casirivimab) or fully (Bamlanivimab) resistant to antibodies used for COVID-19 treatment. Moreover, entry of these variants was less efficiently inhibited by plasma from convalescent COVID-19 patients and sera from BNT162b2-vaccinated individuals. These results suggest that SARS-CoV-2 may escape neutralizing antibody responses, which has important implications for efforts to contain the pandemic.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , Animales , COVID-19/inmunología , COVID-19/terapia , COVID-19/virología , Línea Celular , Farmacorresistencia Viral , Humanos , Inmunización Pasiva , Cinética , Fusión de Membrana , Modelos Moleculares , Pruebas de Neutralización , Serina Endopeptidasas/metabolismo , Solubilidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Internalización del Virus , Sueroterapia para COVID-19RESUMEN
Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.
Asunto(s)
Productos Biológicos , COVID-19 , Animales , Organofosfatos/farmacología , SARS-CoV-2 , Proteínas Amiloidogénicas , MamíferosRESUMEN
Topically applied microbicides may play a critical role in preventing sexual transmission of human immunodeficiency virus type 1 (HIV-1); however, their efficacy can be compromised by amyloid fibrils present in semen, which significantly increase HIV-1 infectivity. This phenomenon may have contributed to the failure of most microbicide candidates in clinical settings. Understanding the impact of semen on microbicide effectiveness is thus crucial. In our study, we evaluated the influence of semen on the neutralizing activity of broadly neutralizing antibodies (bNAbs), including PG16, PGT121, 10-1074, 3BNC117, and VRC01, which are potential microbicide candidates. We found that semen enhances infection of HIV-1 transmitted/founder viruses but only marginally affects the neutralizing activity of tested antibodies, suggesting their potential for microbicide application. Our findings underscore the need to consider semen-mediated enhancement when evaluating and developing microbicides and highlight the potential of incorporating HIV-1 bNAbs in formulations to enhance efficacy and mitigate HIV-1 transmission during sexual encounters.IMPORTANCEThis study examined the impact of semen on the development of microbicides, substances used to prevent the transmission of HIV-1 during sexual activity. Semen contains certain components that can render the virus more infectious, posing a challenge to microbicide effectiveness. Researchers specifically investigated the effect of semen on a group of powerful antibodies called broadly neutralizing antibodies, which can neutralize a large spectrum of different HIV-1 variants. The results revealed that semen only had a minimal effect on the antibodies' ability to neutralize the virus. This is promising because it suggests that these antibodies could still be effective in microbicides, even in the presence of semen. Understanding this interaction is crucial for developing better strategies to prevent HIV-1 transmission. By incorporating the knowledge gained from this study, scientists can now focus on creating microbicides that consider the impact of semen, bringing us closer to more effective prevention methods.
Asunto(s)
Antiinfecciosos , Infecciones por VIH , VIH-1 , Semen , Humanos , Antiinfecciosos/farmacología , Anticuerpos Neutralizantes , Antivirales/farmacología , Anticuerpos ampliamente neutralizantes/farmacología , Anticuerpos Anti-VIH , Infecciones por VIH/transmisión , VIH-1/fisiología , Semen/química , Semen/virologíaRESUMEN
Autophagy is an evolutionarily ancient catabolic pathway and has recently emerged as an integral part of the innate immune system. While the core machinery of autophagy is well defined, the physiological regulation of autophagy is less understood. Here, we identify a C-terminal fragment of human hemoglobin A (HBA1, amino acids 111-132) in human bone marrow as a fast-acting non-inflammatory inhibitor of autophagy initiation. It is proteolytically released from full-length HBA1 by cathepsin E, trypsin or pepsin. Biochemical characterization revealed that HBA1(111-132) has an in vitro stability of 52 min in human plasma and adopts a flexible monomeric conformation in solution. Structure-activity relationship studies revealed that the C-terminal 13 amino acids of HBA1(120-132) are sufficient to inhibit autophagy, two charged amino acids (D127, K128) mediate solubility, and two serines (S125, S132) are required for function. Successful viruses like human immunodeficiency virus 1 (HIV-1) evolved strategies to subvert autophagy for virion production. Our results show that HBA1(120-132) reduced virus yields of lab-adapted and primary HIV-1. Summarizing, our data identifies naturally occurring HBA1(111-132) as a physiological, non-inflammatory antagonist of autophagy. Optimized derivatives of HBA1(111-132) may offer perspectives to restrict autophagy-dependent viruses.
Asunto(s)
Autofagia , VIH-1 , Humanos , VIH-1/metabolismo , VIH-1/fisiología , Relación Estructura-Actividad , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Secuencia de AminoácidosRESUMEN
Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.
Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Humanos , Péptidos , Amiloide/química , Antibacterianos/farmacología , HemoglobinasRESUMEN
Cyclic nucleotide-gated (CNG) ion channels of olfactory neurons are tetrameric membrane receptors that are composed of two A2 subunits, one A4 subunit, and one B1b subunit. Each subunit carries a cyclic nucleotide-binding domain in the carboxyl terminus, and the channels are activated by the binding of cyclic nucleotides. The mechanism of cooperative channel activation is still elusive. Using a complete set of engineered concatenated olfactory CNG channels, with all combinations of disabled binding sites and fit analyses with systems of allosteric models, the thermodynamics of microscopic cooperativity for ligand binding was subunit- and state-specifically quantified. We show, for the closed channel, that preoccupation of each of the single subunits increases the affinity of each other subunit with a Gibbs free energy (ΔΔG) of â¼-3.5 to â¼-5.5 kJ â mol-1, depending on the subunit type, with the only exception that a preoccupied opposite A2 subunit has no effect on the other A2 subunit. Preoccupation of two neighbor subunits of a given subunit causes the maximum affinity increase with ΔΔG of â¼-9.6 to â¼-9.9 kJ â mol-1 Surprisingly, triple preoccupation leads to fewer negative ΔΔG values for a given subunit as compared to double preoccupation. Channel opening increases the affinity of all subunits. The equilibrium constants of closed-open isomerizations systematically increase with progressive liganding. This work demonstrates, on the example of the heterotetrameric olfactory CNG channel, a strategy to derive detailed insights into the specific mutual control of the individual subunits in a multisubunit membrane receptor.
Asunto(s)
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Activación del Canal Iónico , Termodinámica , Animales , Sitios de Unión , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Ligandos , Oocitos/metabolismo , Conformación Proteica , Subunidades de Proteína , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismoRESUMEN
GPR15 is a G protein-coupled receptor (GPCR) proposed to play a role in mucosal immunity that also serves as a major entry cofactor for HIV-2 and simian immunodeficiency virus (SIV). To discover novel endogenous GPR15 ligands, we screened a hemofiltrate (HF)-derived peptide library for inhibitors of GPR15-mediated SIV infection. Our approach identified a C-terminal fragment of cystatin C (CysC95-146) that specifically inhibits GPR15-dependent HIV-1, HIV-2, and SIV infection. In contrast, GPR15L, the chemokine ligand of GPR15, failed to inhibit virus infection. We found that cystatin C fragments preventing GPR15-mediated viral entry do not interfere with GPR15L signaling and are generated by proteases activated at sites of inflammation. The antiretroviral activity of CysC95-146 was confirmed in primary CD4+ T cells and is conserved in simian hosts of SIV infection. Thus, we identified a potent endogenous inhibitor of GPR15-mediated HIV and SIV infection that does not interfere with the physiological function of this GPCR.
Asunto(s)
Cistatina C/genética , Infecciones por VIH/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Animales , Infecciones por VIH/patología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/patogenicidad , Humanos , Receptores Virales/genética , Transducción de Señal/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Linfocitos T/metabolismo , Linfocitos T/virología , Internalización del VirusRESUMEN
Philadelphia-chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is characterized by reciprocal chromosomal translocation between chromosome 9 and 22, leading to the expression of constitutively active oncogenic BCR-ABL1 fusion protein. CXC chemokine receptor 4 (CXCR4) is essential for the survival of BCR-ABL1-transformed mouse pre-B cells, as the deletion of CXCR4 induces death in these cells. To investigate whether CXCR4 inhibition also effectively blocks BCR-ABL1-transformed cell growth in vitro, in this study, we explored an array of peptide-based inhibitors of CXCR4. The inhibitors were optimized derivatives of EPI-X4, an endogenous peptide antagonist of CXCR4. We observed that among all the candidates, EPI-X4 JM#170 (referred to as JM#170) effectively induced cell death in BCR-ABL1-transformed mouse B cells but had little effect on untransformed wild-type B cells. Importantly, AMD3100, a small molecule inhibitor of CXCR4, did not show this effect. Treatment with JM#170 induced transient JNK phosphorylation in BCR-ABL1-transformed cells, which in turn activated the intrinsic apoptotic pathway by inducing cJun, Bim, and Bax gene expressions. Combinatorial treatment of JM#170 with ABL1 kinase inhibitor Imatinib exerted a stronger killing effect on BCR-ABL1-transformed cells even at a lower dose of Imatinib. Surprisingly, JM#170 actively killed Sup-B15 cells, a BCR-ABL1+ human ALL cell line, but had no effect on the BCR-ABL1- 697 cell line. This suggests that the inhibitory effect of JM#170 is specific for BCR-ABL1+ ALL. Taken together, JM#170 emerges as a potent novel drug against Ph+ ALL.
Asunto(s)
Proteínas de Fusión bcr-abl , Receptores CXCR4 , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/genética , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/metabolismo , Animales , Ratones , Humanos , Péptidos/farmacología , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Línea Celular Tumoral , Cromosoma Filadelfia/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologíaRESUMEN
Host cell proteases such as TMPRSS2 are critical determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tropism and pathogenesis. Here, we show that antithrombin (AT), an endogenous serine protease inhibitor regulating coagulation, is a broad-spectrum inhibitor of coronavirus infection. Molecular docking and enzyme activity assays demonstrate that AT binds and inhibits TMPRSS2, a serine protease that primes the Spike proteins of coronaviruses for subsequent fusion. Consequently, AT blocks entry driven by the Spikes of SARS-CoV, MERS-CoV, hCoV-229E, SARS-CoV-2 and its variants of concern including Omicron, and suppresses lung cell infection with genuine SARS-CoV-2. Thus, AT is an endogenous inhibitor of SARS-CoV-2 that may be involved in COVID-19 pathogenesis. We further demonstrate that activation of AT by anticoagulants, such as heparin or fondaparinux, increases the anti-TMPRSS2 and anti-SARS-CoV-2 activity of AT, suggesting that repurposing of native and activated AT for COVID-19 treatment should be explored.
Asunto(s)
COVID-19 , Humanos , Antitrombinas/farmacología , Línea Celular , Tratamiento Farmacológico de COVID-19 , Simulación del Acoplamiento Molecular , SARS-CoV-2/metabolismo , Internalización del Virus , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Glicoproteína de la Espiga del Coronavirus/metabolismo , Serina Endopeptidasas/genéticaRESUMEN
Viral infections pose a significant threat to human health, and effective antiviral strategies are urgently needed. Antiviral peptides have emerged as a promising class of therapeutic agents due to their unique properties and mechanisms of action. While effective on their own, combining antiviral peptides may allow us to enhance their potency and to prevent viral resistance. Here, we developed an orthogonal chemical strategy to prepare a heterodimeric peptide conjugate assembled on a protein-based nanoplatform. Specifically, we combined the optimized version of two peptides inhibiting HIV-1 by distinct mechanisms. Virus-inhibitory peptide (VIRIP) is a 20 amino acid fragment of α1-antitrypsin that inhibits HIV-1 by targeting the gp41 fusion peptide. Endogenous peptide inhibitor of CXCR4 (EPI-X4) is a 16-residue fragment of human serum albumin that prevents HIV-1 entry by binding to the viral CXCR4 co-receptor. Optimized forms of both peptides are assembled on supramolecular nanoplatforms through the streptavidin-biotin interaction. We show that the construct consisting of the two different peptides (SAv-VIR-102C9-EPI-X4 JM#173-C) shows increased activity against CCR5- and CXCR4-tropic HIV-1 variants. Our results are a proof of concept that peptides with different modes of action can be assembled on nanoplatforms to enhance their antiviral activity.
Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Péptidos/farmacología , Albúmina Sérica Humana , AntiviralesRESUMEN
The current SARS-CoV-2 pandemic has triggered the development of various SARS-CoV-2 neutralization tests. A wild-type virus (using African green monkey VeroE6 cells), a pseudovirus (using human Caco-2 cells), and a surrogate neutralization test platform were applied to characterize the SARS-CoV-2 neutralization potential of a cohort of 111 convalescent plasma donors over a period of seven months after diagnosis. This allowed an in-depth validation and assay performance analysis of these platforms. More importantly, we found that SARS-CoV-2 neutralization titers were stable or even increased within the observation period, which contradicts earlier studies reporting a rapid waning of Ab titers after three to four months. Moreover, we observed a positive correlation of neutralization titers with increasing age, number of symptoms reported, and the presence of the Rhesus Ag RhD. Validation of the platforms revealed that highest assay performances were obtained with the wild-type virus and the surrogate neutralization platforms. However, our data also suggested that selection of cutoff titers had a strong impact on the evaluation of neutralization potency. When taking strong neutralization potency, as demonstrated by the wild-type virus platform as the gold standard, up to 55% of plasma products had low neutralization titers. However, a significant portion of these products were overrated in their potency when using the surrogate assay with the recommended cutoff titer. In summary, our study demonstrates that SARS-CoV-2 neutralization titers are stable for at least seven months after diagnosis and offers a testing strategy for rapid selection of high-titer convalescent plasma products in a biosafety level 1 environment.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Donantes de Sangre , COVID-19/terapia , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/inmunología , Femenino , Humanos , Inmunización Pasiva , Masculino , Sistema del Grupo Sanguíneo Rh-Hr/inmunología , Sueroterapia para COVID-19RESUMEN
The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax-a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)-induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started.
Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Inmunización/métodos , Modelos Animales , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de ADN/administración & dosificación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/genética , COVID-19/virología , Femenino , Hurones , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Dominios Proteicos , Ratas Sprague-DawleyRESUMEN
EPI-X4, an endogenous peptide inhibitor, has exhibited potential as a blocker of CXCR4-a G protein-coupled receptor. This unique inhibitor demonstrates the ability to impede HIV-1 infection and halt CXCR4-dependent processes such as tumor cell migration and invagination. Despite its promising effects, a comprehensive understanding of the interaction between EPI-X4 and CXCR4 under natural conditions remains elusive due to experimental limitations. To bridge this knowledge gap, a simulation approach was undertaken. Approximately 150,000 secondary structures of EPI-X4 were subjected to simulations to identify thermodynamically stable candidates. This simulation process harnessed a self-developed reactive force field operating within the ReaxFF framework. The application of the Two-Phase Thermodynamic methodology to ReaxFF facilitated the derivation of crucial thermodynamic attributes of the EPI-X4 conformers. To deepen insights, an ab initio density functional theory calculation method was employed to assess the electrostatic potentials of the most relevant (i.e., stable) EPI-X4 structures. This analytical endeavor aimed to enhance comprehension of the inhibitor's structural characteristics. As a result of these investigations, predictions were made regarding how EPI-X4 interacts with CXCR4. Two pivotal requirements emerged. Firstly, the spatial conformation of EPI-X4 must align effectively with the CXCR4 receptor protein. Secondly, the functional groups present on the surface of the inhibitor's structure must complement the corresponding features of CXCR4 to induce attraction between the two entities. These predictive outcomes were based on a meticulous analysis of the conformers, conducted in a gaseous environment. Ultimately, this rigorous exploration yielded a suitable EPI-X4 structure that fulfills the spatial and functional prerequisites for interacting with CXCR4, thus potentially shedding light on new avenues for therapeutic development.
Asunto(s)
Infecciones por VIH , Péptidos , Humanos , Péptidos/farmacología , Péptidos/química , Receptores CXCR4/metabolismo , Conformación MolecularRESUMEN
Mollusks have been widely investigated for antimicrobial peptides because their humoral defense against pathogens is mainly based on these small biomolecules. In this report, we describe the identification of three novel antimicrobial peptides from the marine mollusk Nerita versicolor. A pool of N. versicolor peptides was analyzed with nanoLC-ESI-MS-MS technology, and three potential antimicrobial peptides (Nv-p1, Nv-p2 and Nv-p3) were identified with bioinformatical predictions and selected for chemical synthesis and evaluation of their biological activity. Database searches showed that two of them show partial identity to histone H4 peptide fragments from other invertebrate species. Structural predictions revealed that they all adopt a random coil structure even when placed near a lipid bilayer patch. Nv-p1, Nv-p2 and Nv-p3 exhibited activity against Pseudomonas aeruginosa. The most active peptide was Nv-p3 with an inhibitory activity starting at 1.5 µg/mL in the radial diffusion assays. The peptides were ineffective against Klebsiella pneumoniae, Listeria monocytogenes and Mycobacterium tuberculosis. On the other hand, these peptides demonstrated effective antibiofilm action against Candida albicans, Candida parapsilosis and Candida auris but not against the planktonic cells. None of the peptides had significant toxicity on primary human macrophages and fetal lung fibroblasts at effective antimicrobial concentrations. Our results indicate that N. versicolor-derived peptides represent new AMP sequences and have the potential to be optimized and developed into antibiotic alternatives against bacterial and fungal infections.
Asunto(s)
Antiinfecciosos , Gastrópodos , Animales , Humanos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Moluscos , Pruebas de Sensibilidad MicrobianaRESUMEN
The SARS-CoV-2 pandemic once again highlighted the constant threat posed by viruses. Specific therapeutics are highly warranted, but their development is time consuming and cost intensive. Broad-spectrum antivirals provide a promising option for fast application to treat circulating or newly emerged viruses. Here, we introduce molecular tweezers as broad-spectrum antivirals, which abrogate viral infection by directly targeting the viral membrane. Furthermore, we discuss the current stage of tweezer development to fight SARS-CoV-2 and other respiratory viruses.
RESUMEN
Virtual screening of protein-protein and protein-peptide interactions is a challenging task that directly impacts the processes of hit identification and hit-to-lead optimization in drug design projects involving peptide-based pharmaceuticals. Although several screening tools designed to predict the binding affinity of protein-protein complexes have been proposed, methods specifically developed to predict protein-peptide binding affinity are comparatively scarce. Frequently, predictors trained to score the affinity of small molecules are used for peptides indistinctively, despite the larger complexity and heterogeneity of interactions rendered by peptide binders. To address this issue, we introduce PPI-Affinity, a tool that leverages support vector machine (SVM) predictors of binding affinity to screen datasets of protein-protein and protein-peptide complexes, as well as to generate and rank mutants of a given structure. The performance of the SVM models was assessed on four benchmark datasets, which include protein-protein and protein-peptide binding affinity data. In addition, we evaluated our model on a set of mutants of EPI-X4, an endogenous peptide inhibitor of the chemokine receptor CXCR4, and on complexes of the serine proteases HTRA1 and HTRA3 with peptides. PPI-Affinity is freely accessible at https://protdcal.zmb.uni-due.de/PPIAffinity.
Asunto(s)
Péptidos , Proteínas , Diseño de Fármacos , Péptidos/química , Unión Proteica , Proteínas/metabolismo , Máquina de Vectores de SoporteRESUMEN
BACKGROUND: Most of the millions of people that are vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), have previously been infected by related circulating human coronaviruses (hCoVs) causing common colds and will experience further encounters with these viruses in the future. Whether COVID-19 vaccinations impact neutralization of seasonal coronaviruses is largely unknown. METHODS: We analyzed the capacity of sera derived from 24 individuals before and after heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination to neutralize genuine OC43, NL63, and 229E hCoVs, as well as viral pseudoparticles carrying the SARS-CoV-1, SARS-CoV-2, Middle East Respiratory Syndrome (MERS)-CoV, and hCoV-OC43, hCoV-NL63, and hCoV-229E spike proteins. Genuine hCoVs or spike containing pseudovirions were incubated with different concentrations of sera and neutralization efficiencies were determined by measuring viral RNA yields, intracellular viral nucleocapsid expression, or reporter gene expression in Huh-7 cells. RESULTS: All individuals showed strong preexisting immunity against hCoV-OC43. Neutralization of hCoV-NL63 was more variable and all sera showed only modest inhibitory activity against genuine hCoV-229E. SARS-CoV-2 vaccination resulted in efficient cross-neutralization of SARS-CoV-1 but not of MERS-CoV. On average, vaccination significantly increased the neutralizing activity against genuine hCoV-OC43, hCoV-NL63, and hCoV-229E. CONCLUSIONS: Heterologous COVID-19 vaccination may confer some cross-protection against endemic seasonal coronaviruses.
Asunto(s)
COVID-19 , Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Humanos , SARS-CoV-2 , Estaciones del Año , VacunaciónRESUMEN
Peptides are prime drug candidates due to their high specificity of action but are disadvantaged by low proteolytic stability. Here, we focus on the development of stabilized analogues of EPI-X4, an endogenous peptide antagonist of CXCR4. We synthesized macromolecular peptide conjugates and performed side-by-side comparison with their albumin-binding counterparts and considered monovalent conjugates, divalent telechelic conjugates, and Y-shaped peptide dimers. All constructs were tested for competition with the CXCR4 antibody-receptor engagement, inhibition of receptor activation, and inhibition of the CXCR4-tropic human immunodeficiency virus infection. We found that the Y-shaped conjugates were more potent than the parent peptide and at the same time more stable in human plasma, with a favorable outlook for translational studies.