Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(7): 2142-2148, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38323571

RESUMEN

Spins confined to point defects in atomically thin semiconductors constitute well-defined atomic-scale quantum systems that are being explored as single-photon emitters and spin qubits. Here, we investigate the in-gap electronic structure of individual sulfur vacancies in molybdenum disulfide (MoS2) monolayers using resonant tunneling scanning probe spectroscopy in the Coulomb blockade regime. Spectroscopic mapping of defect wave functions reveals an interplay of local symmetry breaking by a charge-state-dependent Jahn-Teller lattice distortion that, when combined with strong (≃100 meV) spin-orbit coupling, leads to a locking of an unpaired spin-1/2 magnetic moment to the lattice at low temperature, susceptible to lattice strain. Our results provide new insights into the spin and electronic structure of vacancy-induced in-gap states toward their application as electrically and optically addressable quantum systems.

2.
Membranes (Basel) ; 14(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38668113

RESUMEN

In recent years, anion exchange membranes (AEMs) have aroused widespread interest in hydrogen production via water electrolysis using renewable energy sources. The two current commercial low-temperature water electrolysis technologies used are alkaline water electrolysis (AWE) and proton exchange membrane (PEM) water electrolysis. The AWE technology exhibited the advantages of high stability and increased cost-effectiveness with low hydrogen production efficiency. In contrast, PEM water electrolysis exhibited high hydrogen efficiency with low stability and cost-effectiveness, respectively. Unfortunately, the major challenges that AEMs, as well as the corresponding ion transportation membranes, including alkaline hydrogen separator and proton exchange membranes, still face are hydrogen production efficiency, long-term stability, and cost-effectiveness under working conditions, which exhibited critical issues that need to be addressed as a top priority. This review comprehensively presented research progress on AEMs in recent years, providing a thorough understanding of academic studies and industrial applications. It focused on analyzing the chemical structure of polymers and the performance of AEMs and established the relationship between the structure and efficiency of the membranes. This review aimed to identify approaches for improving AEM ion conductivity and alkaline stability. Additionally, future research directions for the commercialization of anion exchange membranes were discussed based on the analysis and assessment of the current applications of AEMs in patents.

3.
J Colloid Interface Sci ; 670: 460-472, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38772262

RESUMEN

Interface engineering and vacancy engineering play an important role in the surface and electronic structure of nanomaterials. The combination of the two provides a feasible way for the development of efficient photocatalytic materials. Here, we use glutathione (GSH) as a coordination molecule to design a series of CuxS nanomaterials (CuxS-GSH) rich in sulfur vacancies using a simple ultrasonic-assisted method. Interface engineering can induce amorphous structure in the crystal while controlling the formation of porous surfaces of nanomaterials, and the formation of a large number of random orientation bonds further increases the concentration of sulfur vacancies in the crystal structure. This study shows that interface engineering and vacancy engineering can enhance the light absorption ability of CuxS-GSH nanomaterials from the visible to the near-infrared region, improve the efficiency of charge transfer between CuxS groups, and promote the separation and transfer of optoelectronic electron-hole pairs. In addition, a higher specific surface area can produce a large number of active sites, and the synergistic and efficient photothermal conversion efficiency (58.01%) can jointly promote the better photocatalytic performance of CuxS-GSH nanomaterials. Based on the excellent hot carrier generation and photothermal conversion performance of CuxS-GSH under illumination, it exhibits an excellent ability to mediate the production of reactive oxygen species (ROS) through peroxide cleavage and has excellent peroxidase activity. Therefore, CuxS-GSH has been successfully developed as a nanoenzyme platform for detecting tannic acid (TA) content in tea, and convenient and rapid detection of tannic acid is achieved through the construction of a multi-model strategy. This work not only provides a new way to enhance the enzyme-like activity of nanomaterials but also provides a new prospect for the application of interface engineering and vacancy engineering in the field of photochemistry.

4.
Int J Biol Macromol ; 269(Pt 2): 131852, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679253

RESUMEN

Particulates and organic toxins, such as microplastics and dye molecules, are contaminants in industrial wastewater that must be purified due to environmental and sustainability concerns. Carboxylated cellulose acetate (CTA-COOH) nanofibrous membranes were fabricated using electrospinning followed by an innovative one-step surface hydrolysis/oxidation replacing the conventional two-step reactions. This approach offers a new pathway for the modification strategy of cellulose-based membranes. The CTA-COOH membrane was utilized for the removal of particulates and cationic dyes through filtration and adsorption, respectively. The filtration performance of the CTA-COOH nanofibrous membrane was carried out; high separation efficiency and low pressure drop were achieved, in addition to the high filtration selectivity against 0.6-µm and 0.8-µm nanoparticles. A cationic Bismarck Brown Y, was employed to challenge the adsorption capability of the CTA-COOH nanofibrous membrane, where the maximum adsorption capacity of the membrane for BBY was 158.73 mg/g. The self-standing CTA-COOH membrane could be used to conduct adsorption-desorption for 17 cycles with the regeneration rate as high as 97.0 %. The CTA-COOH nanofibrous membrane has excellent mechanical properties and was employed to manufacture a spiral wound adsorption cartridge, which exhibited remarkable separation efficiency in terms of treated water volume, which was 5.96 L, and retention rate, which was 100 %.


Asunto(s)
Celulosa , Colorantes , Membranas Artificiales , Nanofibras , Contaminantes Químicos del Agua , Celulosa/química , Celulosa/análogos & derivados , Nanofibras/química , Colorantes/química , Colorantes/aislamiento & purificación , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Material Particulado/química , Filtración/métodos , Aguas Residuales/química
5.
J Funct Biomater ; 15(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38921530

RESUMEN

BACKGROUND: The advent of three-dimensional (3D) printing technology has revolutionized the field of dentistry, enabling the precise fabrication of dental implants. By utilizing 3D printing, dentists can devise implant plans prior to surgery and accurately translate them into clinical procedures, thereby eliminating the need for multiple surgical procedures, reducing surgical discomfort, and enhancing surgical efficiency. Furthermore, the utilization of digital 3D-printed implant guides facilitates immediate restoration by precisely translating preoperative implant design plans, enabling the preparation of temporary restorations preoperatively. METHODS: This comprehensive study aimed to assess the postoperative oral health status of patients receiving personalized 3D-printed implants and investigate the advantages and disadvantages between the 3D-printed implant and conventional protocol. Additionally, variance analysis was employed to delve into the correlation between periodontal status and overall oral health. Comparisons of continuous paired parameters were made by t-test. RESULTS: The results of our study indicate a commendable one-year survival rate of over 94% for 3D-printed implants. This finding was corroborated by periodontal examinations and follow-up surveys using the Oral Health Impact Profile-14 (OHIP-14) questionnaire, revealing excellent postoperative oral health status among patients. Notably, OHIP-14 scores were significantly higher in patients with suboptimal periodontal health, suggesting a strong link between periodontal health and overall oral well-being. Moreover, we found that the operating time (14.41 ± 4.64 min) was less statistically significant than for the control group (31.76 ± 6.83 min). CONCLUSION: In conclusion, personalized 3D-printed implant surgery has emerged as a reliable clinical option, offering a viable alternative to traditional implant methods. However, it is imperative to gather further evidence-based medical support through extended follow-up studies to validate its long-term efficacy and safety.

6.
J Endod ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821262

RESUMEN

INTRODUCTION: Automated segmentation of 3-dimensional pulp space on cone-beam computed tomography images presents a significant opportunity for enhancing diagnosis, treatment planning, and clinical education in endodontics. The aim of this systematic review was to investigate the performance of artificial intelligence-driven automated pulp space segmentation on cone-beam computed tomography images. METHODS: A comprehensive electronic search was performed using PubMed, Web of Science, and Cochrane databases, up until February 2024. Two independent reviewers participated in the selection of studies, data extraction, and evaluation of the included studies. Any disagreements were resolved by a third reviewer. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess the risk of bias. RESULTS: Thirteen studies that met the eligibility criteria were included. Most studies demonstrated high accuracy in their respective segmentation methods, although there was some variation across different structures (pulp chamber, root canal) and tooth types (single-rooted, multirooted). Automated segmentation showed slightly superior performance for segmenting the pulp chamber compared to the root canal and single-rooted teeth compared to multi-rooted ones. Furthermore, the second mesiobuccal (MB2) canalsegmentation also demonstrated high performance. In terms of time efficiency, the minimum time required for segmentation was 13 seconds. CONCLUSION: Artificial intelligence-driven models demonstrated outstanding performance in pulp space segmentation. Nevertheless, these findings warrant careful interpretation, and their generalizability is limited due to the potential risk and low evidence level arising from inadequately detailed methodologies and inconsistent assessment techniques. In addition, there is room for further improvement, specifically for root canal segmentation and testing of artificial intelligence performance in artifact-induced images.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA