Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(3): e1011201, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36888569

RESUMEN

Autophagy plays an important role in the infectious processes of diverse pathogens. For instance, cellular autophagy could be harnessed by viruses to facilitate replication. However, it is still uncertain about the interplay of autophagy and swine acute diarrhea syndrome coronavirus (SADS-CoV) in cells. In this study, we reported that SADS-CoV infection could induce a complete autophagy process both in vitro and in vivo, and an inhibition of autophagy significantly decreased SADS-CoV production, thus suggesting that autophagy facilitated the replication of SADS-CoV. We found that ER stress and its downstream IRE1 pathway were indispensable in the processes of SADS-CoV-induced autophagy. We also demonstrated that IRE1-JNK-Beclin 1 signaling pathway, neither PERK-EIF2S1 nor ATF6 pathways, was essential during SADS-CoV-induced autophagy. Importantly, our work provided the first evidence that expression of SADS-CoV PLP2-TM protein induced autophagy through the IRE1-JNK-Beclin 1 signaling pathway. Furthermore, the interaction of viral PLP2-TMF451-L490 domain and substrate-binding domain of GRP78 was identified to activate the IRE1-JNK-Beclin 1 signaling pathway, and thus resulting in autophagy, and in turn, enhancing SADS-CoV replication. Collectively, these results not only showed that autophagy promoted SADS-CoV replication in cultured cells, but also revealed that the molecular mechanism underlying SADS-CoV-induced autophagy in cells.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Papaína , Papaína/metabolismo , Beclina-1 , Péptido Hidrolasas/metabolismo , Autofagia , Transducción de Señal , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
2.
BMC Genomics ; 25(1): 326, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561689

RESUMEN

BACKGROUND: Jilin white goose is an excellent local breed in China, with a high annual egg production and laying eggs mainly from February to July each year. The testis, as the only organ that can produce sperm, can affect the sexual maturity and fecundity of male animals. Its growth and development are affected and regulated by a variety of factors. Proteomics is generally applied to identify and quantify proteins in cells and tissues in order to understand the physiological or pathological changes that occur in tissues or cells under specific conditions. Currently, the female poultry reproductive system has been extensively studied, while few related studies focusing on the regulatory mechanism of the reproductive system of male poultry have been conducted. RESULTS: A total of 1753 differentially expressed proteins (DEPs) were generated in which there were 594, 391 and 768 different proteins showing differential expression in three stages, Initial of Laying Cycle (ILC), Peak of Laying Cycle (PLC) and End of Laying Cycle (ELC). Furthermore, bioinformatics was used to analyze the DEPs. Gene ontology (GO) enrichment, Clusters of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analysis were adopted. All DEPs were found to be implicated in multiple biological processes and pathways associated with testicular development, such as renin secretion, Lysosomes, SNARE interactions in vesicle trafficking, the p53 signaling pathway and pathways related to metabolism. Additionally, the reliability of transcriptome results was verified by real-time quantitative PCR by selecting the transcript abundance of 6 selected DEPs at the three stages of the laying cycle. CONCLUSIONS: The funding in this study will provide critical insight into the complex molecular mechanisms and breeding practices underlying the developmental characteristics of testicles in Jilin white goose.


Asunto(s)
Gansos , Testículo , Animales , Masculino , Femenino , Gansos/genética , Reproducibilidad de los Resultados , Semen , Transcriptoma , Perfilación de la Expresión Génica
3.
J Med Virol ; 96(6): e29712, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38808555

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused severe intestinal diseases in pigs. It originates from bat coronaviruses HKU2 and has a potential risk of cross-species transmission, raising concerns about its zoonotic potential. Viral entry-related host factors are critical determinants of susceptibility to cells, tissues, or species, and remain to be elucidated for SADS-CoV. Type II transmembrane serine proteases (TTSPs) family is involved in many coronavirus infections and has trypsin-like catalytic activity. Here we examine all 18 members of the TTSPs family through CRISPR-based activation of endogenous protein expression in cells, and find that, in addition to TMPRSS2 and TMPRSS4, TMPRSS13 significantly facilitates SADS-CoV infection. This is confirmed by ectopic expression of TMPRSS13, and specific to trypsin-dependent SADS-CoV. Infection with pseudovirus bearing SADS-CoV spike protein indicates that TMPRSS13 acts at the entry step and is sensitive to serine protease inhibitor Camostat. Moreover, both human and pig TMPRSS13 are able to enhance the cell-cell membrane fusion and cleavage of spike protein. Overall, we demonstrate that TMPRSS13 is another host serine protease promoting the membrane-fusion entry of SADS-CoV, which may expand its host tropism by using diverse TTSPs.


Asunto(s)
Proteínas de la Membrana , Serina Endopeptidasas , Internalización del Virus , Animales , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Porcinos , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Alphacoronavirus/genética , Alphacoronavirus/fisiología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/metabolismo , Gabexato/análogos & derivados , Gabexato/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Células HEK293 , Línea Celular , Chlorocebus aethiops , Enfermedades de los Porcinos/virología , Ésteres , Guanidinas
4.
Nature ; 556(7700): 255-258, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618817

RESUMEN

Cross-species transmission of viruses from wildlife animal reservoirs poses a marked threat to human and animal health 1 . Bats have been recognized as one of the most important reservoirs for emerging viruses and the transmission of a coronavirus that originated in bats to humans via intermediate hosts was responsible for the high-impact emerging zoonosis, severe acute respiratory syndrome (SARS) 2-10 . Here we provide virological, epidemiological, evolutionary and experimental evidence that a novel HKU2-related bat coronavirus, swine acute diarrhoea syndrome coronavirus (SADS-CoV), is the aetiological agent that was responsible for a large-scale outbreak of fatal disease in pigs in China that has caused the death of 24,693 piglets across four farms. Notably, the outbreak began in Guangdong province in the vicinity of the origin of the SARS pandemic. Furthermore, we identified SADS-related CoVs with 96-98% sequence identity in 9.8% (58 out of 591) of anal swabs collected from bats in Guangdong province during 2013-2016, predominantly in horseshoe bats (Rhinolophus spp.) that are known reservoirs of SARS-related CoVs. We found that there were striking similarities between the SADS and SARS outbreaks in geographical, temporal, ecological and aetiological settings. This study highlights the importance of identifying coronavirus diversity and distribution in bats to mitigate future outbreaks that could threaten livestock, public health and economic growth.


Asunto(s)
Alphacoronavirus/aislamiento & purificación , Alphacoronavirus/patogenicidad , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/virología , Quirópteros/virología , Infecciones por Coronavirus/veterinaria , Diarrea/veterinaria , Porcinos/virología , Alphacoronavirus/clasificación , Alphacoronavirus/genética , Enfermedades de los Animales/transmisión , Animales , Biodiversidad , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Diarrea/patología , Diarrea/virología , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/virología , Genoma Viral/genética , Humanos , Yeyuno/patología , Yeyuno/virología , Filogenia , Síndrome Respiratorio Agudo Grave/epidemiología , Síndrome Respiratorio Agudo Grave/veterinaria , Síndrome Respiratorio Agudo Grave/virología , Análisis Espacio-Temporal , Zoonosis/epidemiología , Zoonosis/transmisión , Zoonosis/virología
5.
Genomics ; 114(1): 38-44, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34839020

RESUMEN

Proteus phage vB_PvuS_Pm34 (Pm34) isolated from the sewage, is a novel virus specific to Proteus vulgaris. Pm34 belonged to the family Siphovirodae with an icosahedron capsid head and a non-contractile tail. Its genome was 39,558 bp in length with a G + C content of 41.4%. Similarity analysis showed that Pm34 shared low identities of 27.6%-38.4% with any other Proteus phages, but had the 96% high identity with Proteus mirabilis AOUC-001. In the genome of Pm34, 70 open reading frames was deduced and 32 had putative functions including integrase and host lysis proteins. No tRNAs, antibiotic resistance and virulence genes were detected. Pm 34 presented a broad pH (4-8) and good temperature tolerance (<40 °C). This is the first report of the bacteriophage specific to P. vulgaris, which can enrich the knowledge of bacteriophages of Prouteus bacteria and provide the possibility for the alternative treatment of P. vulgaris infection.


Asunto(s)
Bacteriófagos , Siphoviridae , Bacteriófagos/genética , Genoma Viral , Genómica , Sistemas de Lectura Abierta , Proteus mirabilis/genética , Proteus vulgaris/genética , Siphoviridae/genética
6.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047110

RESUMEN

Senecavirus A (SVA) is an oncolytic RNA virus, and it is the ideal oncolytic virus that can be genetically engineered for editing. However, there has not been much exploration into creating SVA viruses that carry antitumor genes to increase their oncolytic potential. The construction of SVA viruses carrying antitumor genes that enhance oncolytic potential has not been fully explored. In this study, a recombinant SVA-CH-01-2015 virus (p15A-SVA-clone) expressing the human p16INK4A protein, also known as cell cycle-dependent protein kinase inhibitor 2A (CDKN2A), was successfully rescued and characterized. The recombinant virus, called SVA-p16, exhibited similar viral replication kinetics to the parent virus, was genetically stable, and demonstrated enhanced antitumor effects in Ishikawa cells. Additionally, another recombinant SVA virus carrying a reporter gene (iLOV), SVA-iLOV, was constructed and identified using the same construction method as an auxiliary validation. Collectively, this study successfully created a new recombinant virus, SVA-p16, that showed increased antitumor effects and could serve as a model for further exploring the antitumor potential of SVA as an oncolytic virus.


Asunto(s)
Enfermedades Transmisibles , Virus Oncolíticos , Picornaviridae , Humanos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Virus Oncolíticos/genética , ARN
7.
BMC Genomics ; 23(1): 821, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510127

RESUMEN

BACKGROUND: Hungarian white goose has excellent down production performance and was introduced to China in 2010. The growth and development of feather follicles has an important impact on down production. Goose feather follicles can be divided into primary and secondary feather follicles, both of which originate in the embryonic stage. Msx2 (Msh Homeobox 2) plays a regulatory role in tissues and organs such as eyes, teeth, bones and skin. However, its regulatory mechanism on goose feather follicles development remains unclear. RESULTS: Msx2 gene first increased, then decreased and increased at the end (E13, E18, E23, E28) during embryonic feather follicle development, and the expression level was the highest at E18. The pEGFP-N1-Msx2 overexpression vector and si-Msx2 siRNA vector were constructed to transfect goose embryo dermal fibroblasts. The results showed that the cell viability of ov-Msx2 group was significantly increased, and the gene expression levels of FGF5 and TGF-ß1 genes were significantly down-regulated (P < 0.05), the expressions of PCNA, Bcl2, CDK1, FOXN1 and KGF genes were significantly up-regulated (P < 0.05). After transfection of siRNA vector, the cell viability of the si-Msx2 group was significantly decreased (P < 0.01) compared with the si-NC group. TGF-ß1 expression was significantly up-regulated (P < 0.05), FGF5 expression was extremely significantly up-regulated (P < 0.01), while PCNA, Bcl2, CDK1, FOXN1 and KGF gene expression was significantly down-regulated (P < 0.05). High-throughput sequencing technology was used to mine the exon SNPs of Msx2. A total of 11 SNP loci were screened, four of the SNPs located in exon 1 were missense mutations. The feather follicle diameter of the GC genotype at the G78C site is significantly larger than that of the other two genotypes. CONCLUSIONS: Msx2 maybe inhibit the apoptosis of goose dermal fibroblasts and promotes their proliferation. G78C can be used as a potential molecular marker for downy Variety.


Asunto(s)
Gansos , Factor de Crecimiento Transformador beta1 , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Gansos/genética , Plumas , Desarrollo Embrionario/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
8.
Cancer Sci ; 110(1): 221-234, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30417588

RESUMEN

Glioblastoma (GBM) is a highly infiltrative and malignant primary brain tumor. Despite aggressive therapy, patients with GBM have a dismal prognosis with median survival of approximately 1 year. Tamoxifen (TAM), a selective estrogen receptor modulator (SERM), has been used to treat GBM for many years. ER-α36 is a novel variant of estrogen receptor-alpha66 (ER-α66) and can mediate cell proliferation through estrogen or anti-estrogen signaling in different cancer cells. Previously, we found that ER-α36 was highly expressed in GBM and was involved in the tamoxifen sensitivity of glioblastoma cells. However, the molecular mechanism responsible has not been well established. Here, we found that ER-α36 is highly expressed in glioblastoma specimens. We further found that ER-α36 knockdown increased sensitivity of glioblastoma U87 cells to TAM and decreased autophagy in these cells. However, ER-α36 overexpression decreased TAM sensitivity and induced autophagy. We also established TAM-resistant glioblastoma U251 cells by a long-term culture in TAM-containing medium and found that TAM-resistant cells showed a six-fold increase of ER-α36 mRNA expression and elevated basal autophagy. ER-α36 knockdown in these TAM-resistant cells restored TAM sensitivity. In addition, we recapitulated the physiologically relevant tumor microenvironment in an integrated microfluidic device, and U87 cells were treated with a gradient of TAM. We found that ER-α36 expression is consistent with autophagy protein P62 in a three-dimensional microenvironment. In summary, these results indicate that ER-α36 contributes to tamoxifen resistance in glioblastoma cells presumably through regulation of autophagy.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Receptor alfa de Estrógeno/genética , Glioblastoma/tratamiento farmacológico , Tamoxifeno/farmacología , Autofagia/efectos de los fármacos , Autofagia/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Interferencia de ARN , Moduladores Selectivos de los Receptores de Estrógeno/farmacología
9.
J Virol ; 92(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29263268

RESUMEN

The group of highly related avian leukosis viruses (ALVs) in chickens are thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells. Hosts exposed to ALVs might be under selective pressure to develop resistance to ALV infection. Indeed, resistance alleles have previously been identified in all four receptor loci in chickens. The tvb gene encodes a receptor, which determines the susceptibility of host cells to ALV subgroup B (ALV-B), ALV-D, and ALV-E. Here we describe the identification of two novel alleles of the tvb receptor gene, which possess independent insertions each within exon 4. The insertions resulted in frameshift mutations that reveal a premature stop codon that causes nonsense-mediated decay of the mutant mRNA and the production of truncated Tvb protein. As a result, we observed that the frameshift mutations in the tvb gene significantly lower the binding affinity of the truncated Tvb receptors for the ALV-B, ALV-D, and ALV-E envelope glycoproteins and significantly reduce susceptibility to infection by ALV-B, ALV-D and ALV-E in vitro and in vivo Taken together, these findings suggest that frameshift mutation can be a molecular mechanism of reducing susceptibility to ALV and enhance our understanding of virus-host coevolution.IMPORTANCE Avian leukosis virus (ALV) once caused devastating economic loss to the U.S. poultry industry prior the current eradication schemes in place, and it continues to cause severe calamity to the poultry industry in China and Southeast Asia, where deployment of a complete eradication scheme remains a challenge. The tvb gene encodes the cellular receptor necessary for subgroup B, D, and E ALV infection. Two tvb allelic variants that resulted from frameshift mutations have been identified in this study, which have been shown to have significantly reduced functionality in mediating subgroup B, D, and E ALV infection. Unlike the control of herpesvirus-induced diseases by vaccination, the control of avian leukosis in chickens has relied totally on virus eradication measures and host genetic resistance. This finding enriches the allelic pool of the tvb gene and expands the potential for genetic improvement of ALV resistance in varied chicken populations by selection.


Asunto(s)
Virus de la Leucosis Aviar/metabolismo , Leucosis Aviar , Proteínas Aviares , Pollos , Mutación del Sistema de Lectura , Predisposición Genética a la Enfermedad , Receptores Virales , Animales , Leucosis Aviar/genética , Leucosis Aviar/metabolismo , Virus de la Leucosis Aviar/genética , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Línea Celular , Pollos/genética , Pollos/metabolismo , Pollos/virología , Receptores Virales/genética , Receptores Virales/metabolismo
10.
Microb Pathog ; 126: 40-44, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30366127

RESUMEN

Aberrant expression of microRNAs (miRNAs) is known to be involved in cancer progression caused by subgroup J avian leukosis virus (ALV-J) in liver tissues. To advance our understanding of the related pathological mechanisms and virus-host interactions, seven previously reported miRNAs were selected for a comparative analysis of miRNA expression between infected and uninfected DF-1 cells, including six miRNAs related to tumorigenesis (let-7b/7i, miR-221/222, miR-125b, miR-375 and miR-2127. The results showed that six of the seven miRNAs except gga-miR-375 were upregulated in cells infected with NX0101 (caused myeloma (ML)) and GD1109 (caused hemangioma (HE)) at 1 h post infection. On day 2 post-infection, all seven miRNAs were upregulated in infected DF-1 cells. On day 6 post-infection, gga-let-7b, gga-miR-125b, and gga-miR-375 were downregulated whereas gga-miR-221 and gga-miR-222 were upregulated in DF-1 cells infected with the two ALV-J strains of different phenotypes. However, expression of gga-let-7i was reduced in DF-1 cells infected with NX0101 and was increased in those infected with GD1109; gga-miR-2127 expression showed no significant difference between infected and uninfected cells. This study is the first to report the changes in the miRNA expression levels in DF-1 cells during the course of ALV-J infection, and suggests a relationship between its pathological mechanisms and miRNAs.


Asunto(s)
Virus de la Leucosis Aviar/genética , Virus de la Leucosis Aviar/patogenicidad , Interacciones Huésped-Patógeno/genética , MicroARNs/genética , MicroARNs/metabolismo , Animales , Leucosis Aviar/virología , Carcinogénesis , Línea Celular , Embrión de Pollo , Pollos , Regulación hacia Abajo , Fibroblastos/virología , Regulación de la Expresión Génica , Genes Virales , Enfermedades de las Aves de Corral/virología
11.
RNA Biol ; 16(1): 118-132, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30608205

RESUMEN

Circular RNAs (circRNAs) are evolutionarily conserved and widely present, but their functions remain largely unknown. Recent development has highlighted the importance of circRNAs as the sponge of microRNA (miRNA) in cancer. We previously reported that gga-miR-375 was downregulated in the liver tumors of chickens infected with avian leukosis virus subgroup J (ALV-J) by microRNA microarray assay. It can be reasonably assumed in accordance with previous studies that the gga-miR-375 may be related to circRNAs. However, the question as to which circRNA acts as the sponge for gga-miR-375 remains to be answered. In this study, circRNA sequencing results revealed that a circRNA Vav3 termed circ-Vav3 was upregulated in the liver tumors of chickens infected with ALV-J. In addition, RNA immunoprecipitation (RIP), biotinylated RNA pull-down and RNA-fluorescence in situ hybridization (RNA-FISH) experiments were conducted to confirm that circ-Vav3 serves as the sponge of gga-miR-375. Furthermore, we confirmed through dual luciferase reporter assay that YAP1 is the target gene of gga-miR-375. The effect of the sponge function of circ-Vav3 on its downstream genes has been further verified by our conclusion that the sponge function of circ-Vav3 can abrogate gga-miR-375 target gene YAP1 and increase the expression level of YAP1. We further confirmed that the circ-Vav3/gga-miR-375/YAP1 axis induces epithelial-mesenchymal transition (EMT) through influencing EMT markers to promote tumorigenesis. Finally, clinical ALV-J-induced tumor livers were collected to detect core gene expression levels to provide a proof to the concluded tumorigenic mechanism. Together, our results suggest that circ-Vav3/gga-miR-375/YAP1 axis is another regulator of tumorigenesis.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , MicroARNs/genética , Interferencia de ARN , ARN/genética , Regiones no Traducidas 3' , Animales , Leucosis Aviar/complicaciones , Leucosis Aviar/virología , Sitios de Unión , Movimiento Celular/genética , Pollos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Circular
12.
BMC Vet Res ; 15(1): 111, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30971240

RESUMEN

BACKGROUND: PDCoV (Porcine Deltacoronavirus) is a novel porcine coronavirus that causes intestinal necrosis of piglets, thinning of the intestinal wall and severe villus atrophy in the small intestine. PDCoV is a highly contagious infectious disease characterized by diarrhea, dehydration and vomiting. It has been reported that lncRNA has a significant effect on viral replication and increased or decreased virulence. At present, there is almost no research on lncRNA related to PDCoV infection. With the development of the research, a large number of lncRNAs related to PDCoV infection have been discovered. Identifying the role of these lncRNAs in the infection process facilitates the screening of diagnostically significant biomarkers. RESULTS: Using high throughput sequencing to screen differentially expressed long non-coding RNA (lncRNA) during PDCoV infection, we identified 99, 41 and 33 differentially expressed lncRNAs in the early, middle and late stages of infection, respectively. These lncRNAs were involved in glycolysis / gluconeogenesis, histidine metabolism and pentose and Chloroalkane and chloroalkene degradation pathway. We obtained expression data of miRNAs, lncRNAs and mRNAs during PDCoV infection and constructed and investigated an interaction network. The qRT-PCR validation results of 6 differentially expressed lncRNAs were consistent with RNA-Seq results. CONCLUSIONS: This study is the first to examine differentially expressed lncRNAs after PDCoV infection of piglets. These results can provide new insights into PDCoV infection and antiviral strategies.


Asunto(s)
Animales Recién Nacidos/virología , Infecciones por Coronavirus/virología , Coronavirus/genética , ARN Largo no Codificante/genética , Enfermedades de los Porcinos/virología , Animales , Biomarcadores , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Porcinos , Carga Viral/veterinaria
13.
Biomed Microdevices ; 20(3): 80, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30191323

RESUMEN

3D models of tumours have emerged as an advanced technique in pharmacology and tumour cell biology, in particular for studying malignant tumours such as glioblastoma multiforme (GBM). Herein, we developed a 3D GBM model on a detachably assembled microfluidic device, which could be used to study GBM aggressiveness and for anti-GBM drug testing. Fundamental characteristics of the GBM microenvironment in terms of 3D tissue organisation, extracellular matrices and blood flow were reproduced in vitro by serial manipulations in the integrated microfluidic device, including GBM spheroid self-assembly, embedding in a collagen matrix, and continuous perfusion culture, respectively. We could realize multiple spheroids parallel manipulation, whilst, compartmentalized culture, in a highly flexible manner. This method facilitated investigations into the viability, proliferation, invasiveness and phenotype transition of GBM in a 3D microenvironment and under continuous stimulation by drugs. Anti-invasion effect of resveratrol, a naturally isolated polyphenol, was innovatively evaluated using this in vitro 3D GBM model. Temozolomide and the combination of resveratrol and temozolomide were also evaluated as control. This scalable model enables research into GBM in a more physiologically relevant microenvironment, which renders it promising for use in translational or personalised medicine to examine the impact of, or identify combinations of, therapeutic agents.


Asunto(s)
Evaluación de Medicamentos , Glioblastoma/tratamiento farmacológico , Dispositivos Laboratorio en un Chip , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Matriz Extracelular/química , Regulación Neoplásica de la Expresión Génica , Humanos , Esferoides Celulares , Microambiente Tumoral
14.
Arch Virol ; 163(9): 2395-2404, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29767299

RESUMEN

Avian encephalomyelitis virus (AEV) causes typical neurological symptoms in young chicks and a transient drop in egg production and hatchability in adult laying birds, resulting in huge economic losses in the poultry industry. An effective way to control and prevent this disease is vaccination of the flocks. Here, we assessed the efficacy of the live vaccine candidate strain GDt29 against avian encephalomyelitis virus. The GDt29 strain has low virulence, was confirmed safe, and showed no signs of pathogenicity. High titers of AEV-specific antibodies were detected in GDt29-vaccinated hens (S/P > 3.0) and their progeny (S/P > 2.0). Moreover, the eggs of GDt29-vaccinated hens with high levels of maternal antibodies were hatched successfully regardless of challenge with a heterologous AEV strain, and the GDt29 attenuated vaccine showed higher protective efficacy against AEV than the commercial vaccine. Furthermore, contact-exposed chicks bred with GDt29-vaccinated birds generated high titers against AE virus (S/P > 2.8). Collectively, our studies are proof of the principle that GDt29 might be an ideal vaccine candidate to prevent AEV infection, and they highlight the utility of using a live vaccine against AEV.


Asunto(s)
Virus de la Encefalomielitis Aviar/inmunología , Infecciones por Picornaviridae/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Pollos , Virus de la Encefalomielitis Aviar/genética , Femenino , Infecciones por Picornaviridae/inmunología , Infecciones por Picornaviridae/virología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Vacunación , Vacunas Atenuadas/administración & dosificación , Vacunas Virales/administración & dosificación
15.
Asian-Australas J Anim Sci ; 31(2): 278-286, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28823124

RESUMEN

OBJECTIVE: Two experiments were conducted to evaluate vitamin D3 administration to nursery pigs by injection or in drinking water on serum 25-hydroxycholecalciferol (25-OHD3) concentrations. METHODS: At weaning, 51 pigs (27 and 24 pigs in experiments 1 and 2, respectively) were allotted to vitamin D3 treatments. Treatments in experiment 1 were: i) control (CON), no vitamin administration beyond that in the diet, ii) intramuscular (IM) injection of 40,000 IU of vitamin D3 at weaning, and iii) water administration, 5,493 IU of vitamin D3/L drinking water for 14 d postweaning. Treatments in experiment 2 were: i) control (CON), no vitamin administration, and ii) water administration, 92 IU of d-α-tocopherol and 5,493 IU of vitamin D3/L drinking water for 28 d postweaning. The lightest 2 pigs within each pen were IM injected with an additional 1,000 IU of d-α-tocopherol, 100,000 IU of retinyl palmitate, and 100,000 IU of vitamin D3. RESULTS: In both experiments, serum 25-OHD3 was changed after vitamin D3 administration (p<0.05). In experiment 1, injection and water groups had greater values than CON group through d 35 and 21 post-administration, respectively (p<0.05). In experiment 2, serum values peaked at d 3 post-administration in the injection groups regardless of water treatments (p<0.05) whereas CON and water-only groups had peaks at d 14 and 28 post-administration, respectively (p<0.05). Even though the injection groups had greater serum 25-OHD3 concentrations than the non-injection groups through d 7 post-administration regardless of water treatments (p<0.05), the water-only group had greater values than the injection-only group from d 21 post-administration onward (p<0.05). CONCLUSION: Serum 25-OHD3 concentrations in pigs increased either by vitamin D3 injection or drinking water administration. Although a single vitamin D3 injection enhanced serum 25-OHD3 concentrations greater than water administration in the initial period post-administration, a continuous supply of vitamin D3 via drinking water could maintain higher serum values than the single injection.

16.
Small ; 11(30): 3666-75, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25920010

RESUMEN

Creating artificial tissue-like structures that possess the functionality, specificity, and architecture of native tissues remains a big challenge. A new and straightforward strategy for generating shape-controlled collagen building blocks with a well-defined architecture is presented, which can be used for self-assembly of complex 3D microtissues. Collagen blocks with tunable geometries are controllably produced and released via a membrane-templated microdevice. The formation of functional microtissues by embedding tissue-specific cells into collagen blocks with expression of specific proteins is described. The spontaneous self-assembly of cell-laden collagen blocks into organized tissue constructs with predetermined configurations is demonstrated, which are largely driven by the synergistic effects of cell-cell and cell-matrix interactions. This new strategy would open up new avenues for the study of tissue/organ morphogenesis, and tissue engineering applications.


Asunto(s)
Órganos Bioartificiales , Colágeno/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Impresión Tridimensional , Ingeniería de Tejidos/instrumentación , Colágeno/ultraestructura , Matriz Extracelular/química , Humanos , Ingeniería de Tejidos/métodos , Andamios del Tejido
17.
Analyst ; 140(2): 644-53, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25429370

RESUMEN

Nanocomposites of NiFex embedded in ordered mesoporous carbon (OMC) (x = 0, 1, 2) were prepared by a wet impregnation and hydrogen reduction process and were used to construct electrochemical biosensors for the amperometric detection of hydrogen peroxide (H2O2) or glucose. The NiFe2/OMC nanocomposites were demonstrated to have a large surface area, suitable mesoporous channels, many edge-plane-like defective sites, and a good distribution of alloyed nanoparticles. The NiFe2/OMC and Nafion modified glass carbon electrode (GCE) exhibited excellent electrocatalytic activities toward the reduction of H2O2 as well. By utilizing it as a bioplatform, GOx (glucose oxidase) cross-linked with Nafion was immobilized on the surface of the electrode for the construction of an amperometric glucose biosensor. Our results indicated that the amperometric hydrogen peroxide biosensor (NiFe2/OMC + Nafion + GCE) showed good analytical performances in term of a high sensitivity of 4.29 µA mM(-1) cm(-2), wide linearity from 6.2 to 42,710 µM and a low detection limit of 0.24 µM at a signal-to-noise ratio of 3 (S/N = 3). This biosensor exhibited excellent selectivity, high stability and negligible interference for the detection of H2O2. In addition, the immobilized enzyme on NiFe2/OMC + Nafion + GCE, retaining its bioactivity, exhibited a reversible two-proton and two-electron transfer reaction, a fast heterogeneous electron transfer rate and an effective Michaelis-Menten constant (K) (3.18 mM). The GOx + NiFe2/OMC + Nafion + GCE could be used to detect glucose based on the oxidation of glucose catalyzed by GOx and exhibited a wide detection range of 48.6-12,500 µM with a high sensitivity of 6.9 µA mM(-1) cm(-2) and a low detection limit of 2.7 µM (S/N = 3). The enzymic biosensor maintained a high selectivity and stability features, and shows great promise for application in the detection of glucose.


Asunto(s)
Técnicas Biosensibles/métodos , Glucosa/análisis , Peróxido de Hidrógeno/análisis , Nanocompuestos/química , Técnicas Electroquímicas/métodos , Enzimas Inmovilizadas/metabolismo , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Hierro/química , Nanotubos de Carbono , Níquel/química , Oxidación-Reducción
18.
Bioprocess Biosyst Eng ; 38(6): 1081-90, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25567414

RESUMEN

Aerobic granular sludge degrading recalcitrant compounds are generally hard to be cultivated. This study investigated the feasibility of cultivating 2,4-dichlorophenoxyacetic acid (2,4-D) degrading aerobic granules using half-matured sludge granules pre-grown on glucose as the seeds and bioaugmentation with a 2,4-D degrading strain Achromobacter sp. QXH. Results showed that bioaugmentation promoted the steady transformation of glucose-grown granules to 2,4-D degrading sludge granules and fast establishment of 2,4-D degradation ability. The 2,4-D degradation rate of the bioaugmented granules was enhanced by 36-62 % compared to the control at 2,4-D concentrations of 144-565 mg/L on Day 18. The inoculated strain was incorporated into the half-matured granules successfully and survived till the end of operation (220 days). Sludge granules at a mean size of 420 µm and capable of utilizing 500 mg/L 2,4-D as the sole carbon source were finally obtained. Sludge microbial community shifted slightly during the whole operation and the dominant bacteria species belonged to Proteobacteria.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/metabolismo , Aguas del Alcantarillado/microbiología , Aerobiosis , Reactores Biológicos
19.
Vet Microbiol ; 289: 109916, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159369

RESUMEN

Porcine deltacoronavirus (PDCoV) infection in piglets can cause small intestinal epithelial necrosis and atrophic enteritis, which leads to severe damages to host cells, and result in diarrhea. In this study, we investigated the relationship between miR-361, SLC9A3(Solute carrier family 9, subfamily A, member 3), and NHE3(sodium-hydrogen exchanger member 3) in in porcine intestinal epithelial cells (IPI-2I) cells after PDCoV infection. Our results showed that the ssc-miR-361-3p expression inhibits the mRNA level of SLC9A3 gene which lead to the descending of NHE3 protein expression, and the NHE3 activity was suppressed. NHE3 activity was suppressed via down-regulation expression of SLC9A3 mRNA by transfection with siRNA. Ssc-miR-361-3p mimics and inhibitors were used to change the expression of ssc-miR-361-3p in IPI-2I cells. Ssc-miR-361-3p overexpression reduced the mRNA level of SLC9A3 gene, the level of NHE3 protein expression and NHE3 activity in IPI-2I cells, while ssc-miR-361-3p inhibits NHE3. Furthermore, luciferase reporter assay showed that SLC9A3 gene was a direct target of ssc-miR-361-3p. Ssc-miR-361-3p inhibition restored NHE3 activity in PDCoV infected IPI-2I cells by up-regulating SLC9A3 mRNA expression and NHE3 protein expression. These results demonstrate that the PDCoV infection can inhibit NHE3 activity through miR-361-3p/SLC9A3 regulatory axis. The relevant research is reported for the first time in PDCoV, which has significance in exploring the pathogenic mechanism of PDCoV and can provide a theoretical basis for its prevention and control. suggesting that NHE3 and ssc-miR-361-3p may be potential therapeutic targets for diarrhea in infected piglets.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , MicroARNs , Enfermedades de los Porcinos , Porcinos , Animales , Coronavirus/fisiología , Intercambiador 3 de Sodio-Hidrógeno/genética , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Infecciones por Coronavirus/veterinaria , Células Epiteliales , Diarrea/veterinaria , ARN Mensajero/genética , ARN Mensajero/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
20.
Front Bioeng Biotechnol ; 12: 1361682, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562665

RESUMEN

Introduction: Glioblastoma (GBM) is a primary brain malignancy with a dismal prognosis and remains incurable at present. In this study, macrophages (MΦ) were developed to carry nanoparticle albumin-bound paclitaxel (nab-PTX) to form nab-PTX/MΦ. The aim of this study is to use a GBM-on-a-chip to evaluate the anti-GBM effects of nab-PTX/MΦ. Methods: In this study, we constructed nab-PTX/MΦ by incubating live MΦ with nab-PTX. We developed a microfluidic chip to co-culture GBM cells and human umbilical vein endothelial cells, mimicking the simplified blood-brain barrier and GBM. Using a syringe pump, we perform sustainable perfusion of nutrient media. To evaluate the anti-GBM effects nab-PTX/MΦ, we treated the GBM-on-a-chip model with nab-PTX/MΦ and investigated GBM cell proliferation, migration, and spheroid formation. Results: At the chosen concentration, nab-PTX did not significantly affect the viability, chemotaxis and migration of MΦ. The uptake of nab-PTX by MΦ occurred within 1 h of incubation and almost reached saturation at 6 h. Additionally, nab-PTX/MΦ exhibited the M1 phenotype, which inhibits tumor progression. Following phagocytosis, MΦ were able to release nab-PTX, and the release of nab-PTX by MΦ had nearly reached its limit at 48 h. Compared with control group and blank MΦ group, individual nab-PTX group and nab-PTX/MΦ group could inhibit tumor proliferation, invasion and spheroid formation. Meanwhile, the anti-GBM effect of nab-PTX/MΦ was more significant than nab-PTX. Discussion: Our findings demonstrate that nab-PTX/MΦ has a significant anti-GBM effect compared to individual nab-PTX or MΦ administration, suggesting MΦ as potential drug delivery vectors for GBM therapy. Furthermore, the developed GBM-on-a-chip model provides a potential ex vivo platform for innovative cell-based therapies and tailored therapeutic strategies for GBM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA