Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885124

RESUMEN

Nanoscale zerovalent iron synthesized using borohydride (B-NZVI) has been widely applied in environmental remediation in recent decades. However, the contribution of boron in enhancing the inherent reactivity of B-NZVI and its effectiveness in removing hexavalent chromium [Cr(VI)] have not been well recognized and quantified. To the best of our knowledge, herein, a core-shell structure of B-NZVI featuring an Fe-B alloy shell beneath the iron oxide shell is demonstrated for the first time. Alloyed boron can reduce H+, contributing to more than 35.6% of H2 generation during acid digestion of B-NZVIs. In addition, alloyed B provides electrons for Fe3+ reduction during Cr(VI) removal, preventing in situ passivation of the reactive particle surface. Meanwhile, the amorphous oxide shell of B-NZVI exhibits an increased defect density, promoting the release of Fe2+ outside the shell to reduce Cr(VI), forming layer-structured precipitates and intense Fe-O bonds. Consequently, the surface-area-normalized capacity and surface reaction rate of B-NZVI are 6.5 and 6.9 times higher than those of crystalline NZVI, respectively. This study reveals the importance of alloyed B in Cr(VI) removal using B-NZVI and presents a comprehensive approach for investigating electron pathways and mechanisms involved in B-NZVIs for contaminant removal.

2.
J Hazard Mater ; 440: 129766, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35985214

RESUMEN

Nanoscale zero-valent iron (NZVI) can effectively remove and recover Cd(II) from aqueous solutions. However, the oxygen effects on Cd(II) removal by NZVI have been overlooked and not well studied. In this research, the Cd MNN auger lines obtained by X-ray photoelectron spectroscopy (XPS) revealed that Cd(II) adsorbed on the NZVI surface could be reduced to Cd(0) by the Fe(0) core under anaerobic conditions. With coexisting oxygen, the Cd(II) removal efficiency declined significantly, and Cd(II) reduction was inhibited by the thickened surface γ-FeOOH layer. Furthermore, the post-oxygen intrusion corroded the generated Cd(0) and led to the dramatic leaching of Cd(II) ions. According to the density functional theory (DFT) simulation, the adsorbed Cd(II) was preferably coordinated via a monodentate model on the surface of Fe3O4 and γ-FeOOH, which are the dominant surface species of NZVI under anaerobic and aerobic conditions, respectively. Thus, γ-FeOOH with doubly coordinated hydroxyl groups provided fewer adsorption sites than Fe3O4 for Cd(II) ions. Overall, the atmospheric conditions of subsurface remediation and wastewater treatment should be considered when applying NZVI for Cd(II) removal. Favorable atmospheric conditions would improve the efficiency and cost-effectiveness of NZVI-based technologies for the practical remediation of Cd(II) pollution.

3.
J Hazard Mater ; 420: 126649, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34329076

RESUMEN

Aggregation and surface passivation of nanoscale zero-valent iron (NZVI) particles have limited their reactivity and application for environmental remediation. In this study, an aluminum hydroxide/polyacrylic acid (Al(OH)3/PAA) hybrid shell was homogeneously coated on the NZVI surface to overcome the limitations. PAA molecules were confined onto the NZVI surface by hydration of Al(III) cations. The Al(OH)3/PAA coating shell provided more electrostatic repulsion forces between NZVI particles to hinder the particle aggregation and preserve the NZVI reactivity. On the other hand, the surface-anchored PAA provided a thickened reactive layer for Cr(VI) reduction. Besides, XPS and TEM results showed that the surface carboxylic groups bound produced Cr(III) and Fe(III) cations and inhibited the precipitation of hydroxides on the NZVI surface. The reduced passivation layer increased the longevity of NZVI for surface reactions. As a result, the 24-h Cr(VI) reduction capacity of NZVI particles was improved from 49.4 to 92.6 mg/g with a 2 wt% (Al/Fe) Al(OH)3/PAA coating shell. Overall, this study presented a promising strategy to effectively tune the surface properties of nanoparticles and improve the feasibility of NZVI for environmental remediation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA