Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(11): 1405-1423, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38639096

RESUMEN

BACKGROUND: While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS: Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in 16 588 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS: Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity. The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM in cultured human coronary artery SMCs. CONCLUSIONS: By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced, symptomatic atherosclerosis.


Asunto(s)
Aterosclerosis , Redes Reguladoras de Genes , Análisis de la Célula Individual , Humanos , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Masculino , Placa Aterosclerótica , Progresión de la Enfermedad , Femenino , Macrófagos/metabolismo , Macrófagos/patología , Ratones Noqueados , Receptores de LDL/genética , Receptores de LDL/metabolismo , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología
2.
Circ Res ; 132(3): 323-338, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597873

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is the leading cause of death worldwide. Recent meta-analyses of genome-wide association studies have identified over 175 loci associated with CAD. The majority of these loci are in noncoding regions and are predicted to regulate gene expression. Given that vascular smooth muscle cells (SMCs) play critical roles in the development and progression of CAD, we aimed to identify the subset of the CAD loci associated with the regulation of transcription in distinct SMC phenotypes. METHODS: We measured gene expression in SMCs isolated from the ascending aortas of 151 heart transplant donors of various genetic ancestries in quiescent or proliferative conditions and calculated the association of their expression and splicing with ~6.3 million imputed single-nucleotide polymorphism markers across the genome. RESULTS: We identified 4910 expression and 4412 splicing quantitative trait loci (sQTLs) representing regions of the genome associated with transcript abundance and splicing. A total of 3660 expression quantitative trait loci (eQTLs) had not been observed in the publicly available Genotype-Tissue Expression dataset. Further, 29 and 880 eQTLs were SMC-specific and sex-biased, respectively. We made these results available for public query on a user-friendly website. To identify the effector transcript(s) regulated by CAD loci, we used 4 distinct colocalization approaches. We identified 84 eQTL and 164 sQTL that colocalized with CAD loci, highlighting the importance of genetic regulation of mRNA splicing as a molecular mechanism for CAD genetic risk. Notably, 20% and 35% of the eQTLs were unique to quiescent or proliferative SMCs, respectively. One CAD locus colocalized with a sex-specific eQTL (TERF2IP), and another locus colocalized with SMC-specific eQTL (ALKBH8). The most significantly associated CAD locus, 9p21, was an sQTL for the long noncoding RNA CDKN2B-AS1, also known as ANRIL, in proliferative SMCs. CONCLUSIONS: Collectively, our results provide evidence for the molecular mechanisms of genetic susceptibility to CAD in distinct SMC phenotypes.


Asunto(s)
Enfermedad de la Arteria Coronaria , Masculino , Femenino , Humanos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Regulación de la Expresión Génica , Sitios de Carácter Cuantitativo , Predisposición Genética a la Enfermedad , Expresión Génica , Polimorfismo de Nucleótido Simple , Homólogo 8 de AlkB ARNt Metiltransferasa/genética , Homólogo 8 de AlkB ARNt Metiltransferasa/metabolismo
3.
Circ Res ; 132(9): 1144-1161, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37017084

RESUMEN

BACKGROUND: Genome-wide association studies have identified hundreds of loci associated with common vascular diseases, such as coronary artery disease, myocardial infarction, and hypertension. However, the lack of mechanistic insights for many GWAS loci limits their translation into the clinic. Among these loci with unknown functions is UFL1-four-and-a-half LIM (LIN-11, Isl-1, MEC-3) domain 5 (FHL5; chr6q16.1), which reached genome-wide significance in a recent coronary artery disease/ myocardial infarction GWAS meta-analysis. UFL1-FHL5 is also associated with several vascular diseases, consistent with the widespread pleiotropy observed for GWAS loci. METHODS: We apply a multimodal approach leveraging statistical fine-mapping, epigenomic profiling, and ex vivo analysis of human coronary artery tissues to implicate FHL5 as the top candidate causal gene. We unravel the molecular mechanisms of the cross-phenotype genetic associations through in vitro functional analyses and epigenomic profiling experiments in coronary artery smooth muscle cells. RESULTS: We prioritized FHL5 as the top candidate causal gene at the UFL1-FHL5 locus through expression quantitative trait locus colocalization methods. FHL5 gene expression was enriched in the smooth muscle cells and pericyte population in human artery tissues with coexpression network analyses supporting a functional role in regulating smooth muscle cell contraction. Unexpectedly, under procalcifying conditions, FHL5 overexpression promoted vascular calcification and dysregulated processes related to extracellular matrix organization and calcium handling. Lastly, by mapping FHL5 binding sites and inferring FHL5 target gene function using artery tissue gene regulatory network analyses, we highlight regulatory interactions between FHL5 and downstream coronary artery disease/myocardial infarction loci, such as FOXL1 and FN1 that have roles in vascular remodeling. CONCLUSIONS: Taken together, these studies provide mechanistic insights into the pleiotropic genetic associations of UFL1-FHL5. We show that FHL5 mediates vascular disease risk through transcriptional regulation of downstream vascular remodeling gene programs. These transacting mechanisms may explain a portion of the heritable risk for complex vascular diseases.


Asunto(s)
Enfermedad de la Arteria Coronaria , Hipertensión , Infarto del Miocardio , Humanos , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Estudio de Asociación del Genoma Completo , Remodelación Vascular , Infarto del Miocardio/metabolismo , Hipertensión/metabolismo , Miocitos del Músculo Liso/metabolismo , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Factores de Transcripción/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo
4.
PLoS Genet ; 18(6): e1010261, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35714152

RESUMEN

Genome wide association studies (GWAS) have identified thousands of single nucleotide polymorphisms (SNPs) associated with the risk of common disorders. However, since the large majority of these risk SNPs reside outside gene-coding regions, GWAS generally provide no information about causal mechanisms regarding the specific gene(s) that are affected or the tissue(s) in which these candidate gene(s) exert their effect. The 'gold standard' method for understanding causal genes and their mechanisms of action are laborious basic science studies often involving sophisticated knockin or knockout mouse lines, however, these types of studies are impractical as a high-throughput means to understand the many risk variants that cause complex diseases like coronary artery disease (CAD). As a solution, we developed a streamlined, data-driven informatics pipeline to gain mechanistic insights on complex genetic loci. The pipeline begins by understanding the SNPs in a given locus in terms of their relative location and linkage disequilibrium relationships, and then identifies nearby expression quantitative trait loci (eQTLs) to determine their relative independence and the likely tissues that mediate their disease-causal effects. The pipeline then seeks to understand associations with other disease-relevant genes, disease sub-phenotypes, potential causality (Mendelian randomization), and the regulatory and functional involvement of these genes in gene regulatory co-expression networks (GRNs). Here, we applied this pipeline to understand a cluster of SNPs associated with CAD within and immediately adjacent to the gene encoding HDAC9. Our pipeline demonstrated, and validated, that this locus is causal for CAD by modulation of TWIST1 expression levels in the arterial wall, and by also governing a GRN related to metabolic function in skeletal muscle. Our results reconciled numerous prior studies, and also provided clear evidence that this locus does not govern HDAC9 expression, structure or function. This pipeline should be considered as a powerful and efficient way to understand GWAS risk loci in a manner that better reflects the highly complex nature of genetic risk associated with common disorders.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estudio de Asociación del Genoma Completo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Histona Desacetilasas/metabolismo , Desequilibrio de Ligamiento , Ratones , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Proteínas Represoras/metabolismo
5.
Genome Res ; 30(10): 1379-1392, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32967914

RESUMEN

Sex differences in adipose tissue distribution and function are associated with sex differences in cardiometabolic disease. While many studies have revealed sex differences in adipocyte cell signaling and physiology, there is a relative dearth of information regarding sex differences in transcript abundance and regulation. We investigated sex differences in subcutaneous adipose tissue transcriptional regulation using omic-scale data from ∼3000 geographically and ethnically diverse human samples. We identified 162 genes with robust sex differences in expression. Differentially expressed genes were implicated in oxidative phosphorylation and adipogenesis. We further determined that sex differences in gene expression levels could be related to sex differences in the genetics of gene expression regulation. Our analyses revealed sex-specific genetic associations, and this finding was replicated in a study of 98 inbred mouse strains. The genes under genetic regulation in human and mouse were enriched for oxidative phosphorylation and adipogenesis. Enrichment analysis showed that the associated genetic loci resided within binding motifs for adipogenic transcription factors (e.g., PPARG and EGR1). We demonstrated that sex differences in gene expression could be influenced by sex differences in genetic regulation for six genes (e.g., FADS1 and MAP1B). These genes exhibited dynamic expression patterns during adipogenesis and robust expression in mature human adipocytes. Our results support a role for adipogenesis-related genes in subcutaneous adipose tissue sex differences in the genetic and environmental regulation of gene expression.


Asunto(s)
Adipogénesis/genética , Tejido Adiposo/metabolismo , Regulación de la Expresión Génica , Caracteres Sexuales , delta-5 Desaturasa de Ácido Graso , Femenino , Genotipo , Humanos , Masculino , Fosforilación Oxidativa , Factores de Transcripción/metabolismo
6.
Circulation ; 143(7): 713-726, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33499648

RESUMEN

BACKGROUND: Although sex differences in coronary artery disease are widely accepted with women developing more stable atherosclerosis than men, the underlying pathobiology of such differences remains largely unknown. In coronary artery disease, recent integrative systems biological studies have inferred gene regulatory networks (GRNs). Within these GRNs, key driver genes have shown great promise but have thus far been unidentified in women. METHODS: We generated sex-specific GRNs of the atherosclerotic arterial wall in 160 women and age-matched men in the STARNET study (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task). We integrated the female GRNs with single-cell RNA-sequencing data of the human atherosclerotic plaque and single-cell RNA sequencing of advanced atherosclerotic lesions from wild type and Klf4 knockout atherosclerotic smooth muscle cell (SMC) lineage-tracing mice. RESULTS: By comparing sex-specific GRNs, we observed clear sex differences in network activity within the atherosclerotic tissues. Genes more active in women were associated with mesenchymal cells and endothelial cells, whereas genes more active in men were associated with the immune system. We determined that key drivers of GRNs active in female coronary artery disease were predominantly found in (SMCs by single-cell sequencing of the human atherosclerotic plaques, and higher expressed in female plaque SMCs, as well. To study the functions of these female SMC key drivers in atherosclerosis, we examined single-cell RNA sequencing of advanced atherosclerotic lesions from wild type and Klf4 knockout atherosclerotic SMC lineage-tracing mice. The female key drivers were found to be expressed by phenotypically modulated SMCs and affected by Klf4, suggesting that sex differences in atherosclerosis involve phenotypic switching of plaque SMCs. CONCLUSIONS: Our systems approach provides novel insights into molecular mechanisms that underlie sex differences in atherosclerosis. To discover sex-specific therapeutic targets for atherosclerosis, an increased emphasis on sex-stratified approaches in the analysis of multi-omics data sets is warranted.


Asunto(s)
Aterosclerosis/genética , Redes Reguladoras de Genes/genética , Miocitos del Músculo Liso/metabolismo , Animales , Aterosclerosis/fisiopatología , Diferenciación Celular , Femenino , Humanos , Ratones , Fenotipo
7.
Circ Res ; 127(12): 1552-1565, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33040646

RESUMEN

RATIONALE: Coronary artery disease (CAD) is a major cause of morbidity and mortality worldwide. Recent genome-wide association studies revealed 163 loci associated with CAD. However, the precise molecular mechanisms by which the majority of these loci increase CAD risk are not known. Vascular smooth muscle cells (VSMCs) are critical in the development of CAD. They can play either beneficial or detrimental roles in lesion pathogenesis, depending on the nature of their phenotypic changes. OBJECTIVE: To identify genetic variants associated with atherosclerosis-relevant phenotypes in VSMCs. METHODS AND RESULTS: We quantified 12 atherosclerosis-relevant phenotypes related to calcification, proliferation, and migration in VSMCs isolated from 151 multiethnic heart transplant donors. After genotyping and imputation, we performed association mapping using 6.3 million genetic variants. We demonstrated significant variations in calcification, proliferation, and migration. These phenotypes were not correlated with each other. We performed genome-wide association studies for 12 atherosclerosis-relevant phenotypes and identified 4 genome-wide significant loci associated with at least one VSMC phenotype. We overlapped the previously identified CAD loci with our data set and found nominally significant associations at 79 loci. One of them was the chromosome 1q41 locus, which harbors MIA3. The G allele of the lead risk single nucleotide polymorphism (SNP) rs67180937 was associated with lower VSMC MIA3 expression and lower proliferation. Lentivirus-mediated silencing of MIA3 (melanoma inhibitory activity protein 3) in VSMCs resulted in lower proliferation, consistent with human genetics findings. Furthermore, we observed a significant reduction of MIA3 protein in VSMCs in thin fibrous caps of late-stage atherosclerotic plaques compared to early fibroatheroma with thick and protective fibrous caps in mice and humans. CONCLUSIONS: Our data demonstrate that genetic variants have significant influences on VSMC function relevant to the development of atherosclerosis. Furthermore, high MIA3 expression may promote atheroprotective VSMC phenotypic transitions, including increased proliferation, which is essential in the formation or maintenance of a protective fibrous cap.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/patología , Variación Genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Aterosclerosis/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibrosis , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones Noqueados para ApoE , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fenotipo , Polimorfismo de Nucleótido Simple
8.
PLoS Genet ; 14(11): e1007755, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30444878

RESUMEN

Recent genome-wide association studies (GWAS) have identified multiple new loci which appear to alter coronary artery disease (CAD) risk via arterial wall-specific mechanisms. One of the annotated genes encodes LMOD1 (Leiomodin 1), a member of the actin filament nucleator family that is highly enriched in smooth muscle-containing tissues such as the artery wall. However, it is still unknown whether LMOD1 is the causal gene at this locus and also how the associated variants alter LMOD1 expression/function and CAD risk. Using epigenomic profiling we recently identified a non-coding regulatory variant, rs34091558, which is in tight linkage disequilibrium (LD) with the lead CAD GWAS variant, rs2820315. Herein we demonstrate through expression quantitative trait loci (eQTL) and statistical fine-mapping in GTEx, STARNET, and human coronary artery smooth muscle cell (HCASMC) datasets, rs34091558 is the top regulatory variant for LMOD1 in vascular tissues. Position weight matrix (PWM) analyses identify the protective allele rs34091558-TA to form a conserved Forkhead box O3 (FOXO3) binding motif, which is disrupted by the risk allele rs34091558-A. FOXO3 chromatin immunoprecipitation and reporter assays show reduced FOXO3 binding and LMOD1 transcriptional activity by the risk allele, consistent with effects of FOXO3 downregulation on LMOD1. LMOD1 knockdown results in increased proliferation and migration and decreased cell contraction in HCASMC, and immunostaining in atherosclerotic lesions in the SMC lineage tracing reporter mouse support a key role for LMOD1 in maintaining the differentiated SMC phenotype. These results provide compelling functional evidence that genetic variation is associated with dysregulated LMOD1 expression/function in SMCs, together contributing to the heritable risk for CAD.


Asunto(s)
Autoantígenos/genética , Enfermedad de la Arteria Coronaria/genética , Proteínas del Citoesqueleto/genética , Miocitos del Músculo Liso/metabolismo , Alelos , Animales , Autoantígenos/metabolismo , Becaplermina/metabolismo , Sitios de Unión/genética , Células Cultivadas , Mapeo Cromosómico , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/metabolismo , Vasos Coronarios/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Proteína Forkhead Box O3/metabolismo , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Masculino , Ratones , Ratones Transgénicos , Modelos Cardiovasculares , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Unión Proteica , Sitios de Carácter Cuantitativo , Factores de Riesgo
9.
Basic Res Cardiol ; 115(6): 67, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33185739

RESUMEN

A missense variant of the sushi, von Willebrand factor type A, EGF and pentraxin domain containing protein 1 (SVEP1) is genome-wide significantly associated with coronary artery disease. The mechanisms how SVEP1 impacts atherosclerosis are not known. We found endothelial cells (EC) and vascular smooth muscle cells to represent the major cellular source of SVEP1 in plaques. Plaques were larger in atherosclerosis-prone Svep1 haploinsufficient (ApoE-/-Svep1+/-) compared to Svep1 wild-type mice (ApoE-/-Svep1+/+) and ApoE-/-Svep1+/- mice displayed elevated plaque neutrophil, Ly6Chigh monocyte, and macrophage numbers. We assessed how leukocytes accumulated more inside plaques in ApoE-/-Svep1+/- mice and found enhanced leukocyte recruitment from blood into plaques. In vitro, we examined how SVEP1 deficiency promotes leukocyte recruitment and found elevated expression of the leukocyte attractant chemokine (C-X-C motif) ligand 1 (CXCL1) in EC after incubation with missense compared to wild-type SVEP1. Increasing wild-type SVEP1 levels silenced endothelial CXCL1 release. In line, plasma Cxcl1 levels were elevated in ApoE-/-Svep1+/- mice. Our studies reveal an atheroprotective role of SVEP1. Deficiency of wild-type Svep1 increased endothelial CXCL1 expression leading to enhanced recruitment of proinflammatory leukocytes from blood to plaque. Consequently, elevated vascular inflammation resulted in enhanced plaque progression in Svep1 deficiency.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Vasos Coronarios/metabolismo , Proteínas/metabolismo , Animales , Antígenos Ly/metabolismo , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Células Cultivadas , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Quimiotaxis de Leucocito , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Humanos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Infiltración Neutrófila , Neutrófilos/patología , Placa Aterosclerótica , Polimorfismo de Nucleótido Simple , Proteínas/genética
10.
Nature ; 498(7453): 220-3, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-23665959

RESUMEN

Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. Here we compare the incidence of de novo mutations in 362 severe CHD cases and 264 controls by analysing exome sequencing of parent-offspring trios. CHD cases show a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging (premature termination, frameshift, splice site) mutations. Similar odds ratios are seen across the main classes of severe CHD. We find a marked excess of de novo mutations in genes involved in the production, removal or reading of histone 3 lysine 4 (H3K4) methylation, or ubiquitination of H2BK120, which is required for H3K4 methylation. There are also two de novo mutations in SMAD2, which regulates H3K27 methylation in the embryonic left-right organizer. The combination of both activating (H3K4 methylation) and inactivating (H3K27 methylation) chromatin marks characterizes 'poised' promoters and enhancers, which regulate expression of key developmental genes. These findings implicate de novo point mutations in several hundreds of genes that collectively contribute to approximately 10% of severe CHD.


Asunto(s)
Cardiopatías/congénito , Cardiopatías/genética , Histonas/metabolismo , Adulto , Estudios de Casos y Controles , Niño , Cromatina/química , Cromatina/metabolismo , Análisis Mutacional de ADN , Elementos de Facilitación Genéticos/genética , Exoma/genética , Femenino , Genes del Desarrollo/genética , Cardiopatías/metabolismo , Histonas/química , Humanos , Lisina/química , Lisina/metabolismo , Masculino , Metilación , Mutación , Oportunidad Relativa , Regiones Promotoras Genéticas/genética
11.
J Pathol ; 241(2): 273-280, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27770446

RESUMEN

Group 1 pulmonary hypertension or pulmonary arterial hypertension (PAH) is a rare disease characterized by proliferation and occlusion of small pulmonary arterioles, leading to progressive elevation of pulmonary artery pressure and pulmonary vascular resistance, and right ventricular failure. Historically, it has been associated with a high mortality rate, although, over the last decade, treatment has improved survival. PAH includes idiopathic PAH (IPAH), heritable PAH (HPAH), and PAH associated with certain medical conditions. The aetiology of PAH is heterogeneous, and genetics play an important role in some cases. Mutations in BMPR2, encoding bone morphogenetic protein receptor 2, a member of the transforming growth factor-ß superfamily of receptors, have been identified in 70% of cases of HPAH, and in 10-40% of cases of IPAH. Other genetic causes of PAH include mutations in the genes encoding activin receptor-like type 1, endoglin, SMAD9, caveolin 1, and potassium two-pore-domain channel subfamily K member 3. Mutations in the gene encoding T-box 4 have been identified in 10-30% of paediatric PAH patients, but rarely in adults with PAH. PAH in children is much more heterogeneous than in adults, and can be associated with several genetic syndromes, congenital heart disease, pulmonary disease, and vascular disease. In addition to rare mutations as a monogenic cause of HPAH, common variants in the gene encoding cerebellin 2 increase the risk of PAH by approximately two-fold. A PAH panel of genes is available for clinical testing, and should be considered for use in clinical management, especially for patients with a family history of PAH. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/genética , Hipertensión Pulmonar/genética , Resistencia Vascular/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Humanos , Mutación/genética
12.
Hum Genet ; 135(12): 1399-1409, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27681385

RESUMEN

Intellectual disabilities are genetically heterogeneous and can be associated with congenital anomalies. Using whole-exome sequencing (WES), we identified five different de novo missense variants in the protein phosphatase-1 catalytic subunit beta (PPP1CB) gene in eight unrelated individuals who share an overlapping phenotype of dysmorphic features, macrocephaly, developmental delay or intellectual disability (ID), congenital heart disease, short stature, and skeletal and connective tissue abnormalities. Protein phosphatase-1 (PP1) is a serine/threonine-specific protein phosphatase involved in the dephosphorylation of a variety of proteins. The PPP1CB gene encodes a PP1 subunit that regulates the level of protein phosphorylation. All five altered amino acids we observed are highly conserved among the PP1 subunit family, and all are predicted to disrupt PP1 subunit binding and impair dephosphorylation. Our data suggest that our heterozygous de novo PPP1CB pathogenic variants are associated with syndromic intellectual disability.


Asunto(s)
Estudios de Asociación Genética , Cardiopatías Congénitas/genética , Discapacidad Intelectual/genética , Proteína Fosfatasa 1/genética , Adolescente , Adulto , Niño , Preescolar , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad , Cardiopatías Congénitas/fisiopatología , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Mutación Missense , Fosforilación/genética
13.
N Engl J Med ; 369(4): 351-361, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23883380

RESUMEN

BACKGROUND: Pulmonary arterial hypertension is a devastating disease with high mortality. Familial cases of pulmonary arterial hypertension are usually characterized by autosomal dominant transmission with reduced penetrance, and some familial cases have unknown genetic causes. METHODS: We studied a family in which multiple members had pulmonary arterial hypertension without identifiable mutations in any of the genes known to be associated with the disease, including BMPR2, ALK1, ENG, SMAD9, and CAV1. Three family members were studied with whole-exome sequencing. Additional patients with familial or idiopathic pulmonary arterial hypertension were screened for the mutations in the gene that was identified on whole-exome sequencing. All variants were expressed in COS-7 cells, and channel function was studied by means of patch-clamp analysis. RESULTS: We identified a novel heterozygous missense variant c.608 G→A (G203D) in KCNK3 (the gene encoding potassium channel subfamily K, member 3) as a disease-causing candidate gene in the family. Five additional heterozygous missense variants in KCNK3 were independently identified in 92 unrelated patients with familial pulmonary arterial hypertension and 230 patients with idiopathic pulmonary arterial hypertension. We used in silico bioinformatic tools to predict that all six novel variants would be damaging. Electrophysiological studies of the channel indicated that all these missense mutations resulted in loss of function, and the reduction in the potassium-channel current was remedied by the application of the phospholipase inhibitor ONO-RS-082. CONCLUSIONS: Our study identified the association of a novel gene, KCNK3, with familial and idiopathic pulmonary arterial hypertension. Mutations in this gene produced reduced potassium-channel current, which was successfully remedied by pharmacologic manipulation. (Funded by the National Institutes of Health.)


Asunto(s)
Canalopatías/genética , Hipertensión Pulmonar/genética , Mutación Missense , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Secuencia de Aminoácidos , Canalopatías/tratamiento farmacológico , Clorobenzoatos/uso terapéutico , Cinamatos/uso terapéutico , Exoma , Hipertensión Pulmonar Primaria Familiar , Femenino , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Pulmón/patología , Masculino , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/fisiología , Linaje , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/fisiología , Análisis de Secuencia de ADN , ortoaminobenzoatos/uso terapéutico
14.
Hum Genet ; 133(5): 471-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24442418

RESUMEN

Pulmonary arterial hypertension (PAH) is a rare disease characterized by distinctive changes in pulmonary arterioles that lead to progressive elevation of pulmonary artery pressure, pulmonary vascular resistance, right ventricular failure, and a high mortality rate. The etiology of PAH is heterogeneous and incompletely understood. Based on clinical classification, WHO Group 1 PAH includes sporadic disease (idiopathic PAH), inherited PAH (heritable PAH), and association with certain medical conditions (associated PAH). Genes play an important role in idiopathic and heritable PAH. Mutations in bone morphogenetic protein receptor 2 (BMPR2), a member of the transforming growth factor ß (TGFß) superfamily of receptors, have been identified in 70 % of cases of familial PAH, as well as in 10-40 % of cases of idiopathic PAH. Mutations in ALK-1, ENG, SMAD4 and SMAD8, other TGFß family members, are additional rare causes of PAH. CAV1 regulates SMAD2/3 phosphorylation, and mutations in CAV1 are a rare cause of PAH. KCNK3 is a member of the two-pore domain potassium channels expressed in pulmonary artery smooth muscle cells, and mutations in KCNK3 are a rare cause of both familial and IPAH. The genetics of PAH are complex due to incomplete penetrance and genetic heterogeneity. In addition to rare mutations as a monogenic cause of HPAH, common variants in cerebellin 2 (CBLN2) increase the risk of PAH by approximately twofold. PAH in children is much more heterogeneous than in adults and can be associated with several genetic syndromes, specifically syndromes with congenital heart disease, vascular disease, and hepatic disease. Clinical genetic testing is available for PAH and should be considered in families to allow for more definitive risk stratification and allow for reproductive planning.


Asunto(s)
Hipertensión Pulmonar/genética , Adulto , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Niño , Genes Recesivos , Predisposición Genética a la Enfermedad , Humanos , Mutación , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Factor de Crecimiento Transformador beta/genética
15.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38702075

RESUMEN

Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.


Asunto(s)
Adipocitos , Adipogénesis , Distribución de la Grasa Corporal , Humanos , Adipocitos/metabolismo , Masculino , Femenino , Adipogénesis/genética , Índice de Masa Corporal , Adulto , Redes Reguladoras de Genes , Persona de Mediana Edad , Teorema de Bayes , Relación Cintura-Cadera , Tejido Adiposo/metabolismo , Vía de Señalización Wnt/genética , Regulación de la Expresión Génica/genética , Biología de Sistemas/métodos
16.
Cell Genom ; 4(1): 100465, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38190101

RESUMEN

Genome-wide association studies (GWASs) have identified hundreds of risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWASs, and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotypes to identify quantitative trait loci for expression (eQTLs) and splicing (sQTLs) in coronary arteries from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary artery; 19% exhibited cell-type-specific expression. Colocalization revealed subgroups of eGenes unique to CAD and blood pressure GWAS. Fine-mapping highlighted additional eGenes, including TBX20 and IL5. We also identified sQTLs for 1,690 genes, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing to accurately identify disease-relevant isoform expression. Our work provides a patient-derived coronary artery eQTL resource and exemplifies the need for diverse study populations and multifaceted approaches to characterize gene regulation in disease processes.


Asunto(s)
Vasos Coronarios , Estudio de Asociación del Genoma Completo , Humanos , Predisposición Genética a la Enfermedad/genética , Regulación de la Expresión Génica , Sitios de Carácter Cuantitativo/genética
17.
J Med Genet ; 49(10): 650-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23054247

RESUMEN

BACKGROUND: Congenital diaphragmatic hernia (CDH) is a common birth defect with significant morbidity and mortality. Although the aetiology of CDH remains poorly understood, studies from animal models and patients with CDH suggest that genetic factors play an important role in the development of CDH. Chromosomal anomalies have been reported in CDH. METHODS: In this study, the authors investigated the frequency of chromosomal anomalies and copy number variants (CNVs) in 256 parent-child trios of CDH using clinical conventional cytogenetic and microarray analysis. The authors also selected a set of CDH related training genes to prioritise the genes in those segmental aneuploidies and identified the genes and gene sets that may contribute to the aetiology of CDH. RESULTS: The authors identified chromosomal anomalies in 16 patients (6.3%) of the series including three aneuploidies, two unbalanced translocation, and 11 patients with de novo CNVs ranging in size from 95 kb to 104.6 Mb. The authors prioritised the genes in the CNV segments and identified KCNA2, LMNA, CACNA1S, MYOG, HLX, LBR, AGT, GATA4, SOX7, HYLS1, FOXC1, FOXF2, PDGFA, FGF6, COL4A1, COL4A2, HOMER2, BNC1, BID, and TBX1 as genes that may be involved in diaphragm development. Gene enrichment analysis identified the most relevant gene ontology categories as those involved in tissue development (p=4.4×10(-11)) or regulation of multicellular organismal processes (p=2.8×10(-10)) and 'receptor binding' (p=8.7×10(-14)) and 'DNA binding transcription factor activity' (p=4.4×10(-10)). CONCLUSIONS: The present findings support the role of chromosomal anomalies in CDH and provide a set of candidate genes including FOXC1, FOXF2, PDGFA, FGF6, COL4A1, COL4A2, SOX7, BNC1, BID, and TBX1 for further analysis in CDH.


Asunto(s)
Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad , Hernias Diafragmáticas Congénitas , Aberraciones Cromosómicas , Deleción Cromosómica , Cromosomas Humanos Par 15 , Cromosomas Humanos Par 17 , Cromosomas Humanos Par 8 , Femenino , Orden Génico , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Hernia Diafragmática/diagnóstico , Hernia Diafragmática/genética , Humanos , Masculino , Estudios Retrospectivos
18.
Elife ; 122023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37326626

RESUMEN

Obesity is a major risk factor for cardiovascular disease, stroke, and type 2 diabetes (T2D). Excessive accumulation of fat in the abdomen further increases T2D risk. Abdominal obesity is measured by calculating the ratio of waist-to-hip circumference adjusted for the body-mass index (WHRadjBMI), a trait with a significant genetic inheritance. Genetic loci associated with WHRadjBMI identified in genome-wide association studies are predicted to act through adipose tissues, but many of the exact molecular mechanisms underlying fat distribution and its consequences for T2D risk are poorly understood. Further, mechanisms that uncouple the genetic inheritance of abdominal obesity from T2D risk have not yet been described. Here we utilize multi-omic data to predict mechanisms of action at loci associated with discordant effects on abdominal obesity and T2D risk. We find six genetic signals in five loci associated with protection from T2D but also with increased abdominal obesity. We predict the tissues of action at these discordant loci and the likely effector Genes (eGenes) at three discordant loci, from which we predict significant involvement of adipose biology. We then evaluate the relationship between adipose gene expression of eGenes with adipogenesis, obesity, and diabetic physiological phenotypes. By integrating these analyses with prior literature, we propose models that resolve the discordant associations at two of the five loci. While experimental validation is required to validate predictions, these hypotheses provide potential mechanisms underlying T2D risk stratification within abdominal obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Obesidad Abdominal/genética , Obesidad Abdominal/complicaciones , Estudio de Asociación del Genoma Completo , Obesidad/genética , Obesidad/complicaciones , Sitios Genéticos , Grasa Abdominal
19.
Exp Neurol ; 366: 114448, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37211324

RESUMEN

The prevalence of depression in diabetes mellitus (DM) patients is very high, and it severely impacts the prognosis and quality of life of these patients. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, a new type of oral hypoglycemic drugs, have been shown to alleviate depressive symptoms in DM patients; however, the mechanism underlying this effect is not well understood. The lateral habenula (LHb) plays an important role in the pathogenesis of depression expresses SGLT2, suggesting that the LHb may mediate antidepressant effects of SGLT2 inhibitors. The current study aimed to investigate the involvement of the LHb in the antidepressant effects of the SGLT2 inhibitor dapagliflozin. Chemogenetic methods were used to manipulate the activity of LHb neurons. Behavioral tests, Western blotting, immunohistochemistry, and neurotransmitter assays were used to determine the effects of dapagliflozin on the behavior of DM rats, AMP-activated protein kinase (AMPK) pathway and c-Fos expression in the LHb and 5-hydroxyindoleacetic acid (5-HIAA)/5-hydroxytryptamine (5-HT) ratio in the dorsal raphe nucleus (DRN). We found that DM rats demonstrated depressive-like behavior, increased c-Fos expression, and decreased AMPK pathway activity in the LHb. Inhibition of LHb neurons alleviated the depressive-like behavior of DM rats. Both systemic and local LHb administration of dapagliflozin alleviated the depressive-like behavior and reversed the changes of the AMPK pathway and c-Fos expression in the LHb of DM rats. Dapagliflozin, when microinjected into the LHb, also increased 5-HIAA /5-HT in the DRN. These results suggest that dapagliflozin directly acts on the LHb to alleviate DM-induced depressive-like behavior and that the underlying mechanism involves activating the AMPK signaling pathway, leading to the inhibition of LHb neuronal activity, which in turn increases serotonergic activity in the DRN. These results will help develop new strategies for the treatment of DM-induced depression.


Asunto(s)
Diabetes Mellitus , Habénula , Ratas , Animales , Depresión/tratamiento farmacológico , Depresión/etiología , Depresión/metabolismo , Serotonina/metabolismo , Habénula/metabolismo , Ácido Hidroxiindolacético/metabolismo , Ácido Hidroxiindolacético/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Calidad de Vida , Transportador 2 de Sodio-Glucosa/metabolismo , Transportador 2 de Sodio-Glucosa/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
20.
bioRxiv ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37732278

RESUMEN

BACKGROUND: Excess fat in the abdomen is a sexually dimorphic risk factor for cardio-metabolic disease. The relative storage between abdominal and lower-body subcutaneous adipose tissue depots is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Genome-wide association studies (GWAS) identified 346 loci near 495 genes associated with WHRadjBMI. Most of these genes have unknown roles in fat distribution, but many are expressed and putatively act in adipose tissue. We aimed to identify novel sex- and depot-specific drivers of WHRadjBMI using a systems genetics approach. METHODS: We used two independent cohorts of adipose tissue gene expression with 362 - 444 males and 147 - 219 females, primarily of European ancestry. We constructed sex- and depot- specific Bayesian networks to model the gene-gene interactions from 8,492 adipose tissue genes. Key driver analysis identified genes that, in silico and putatively in vitro, regulate many others, including the 495 WHRadjBMI GWAS genes. Key driver gene function was determined by perturbing their expression in human subcutaneous pre-adipocytes using lenti-virus or siRNA. RESULTS: 51 - 119 key drivers in each network were replicated in both cohorts. We used single-cell expression data to select replicated key drivers expressed in adipocyte precursors and mature adipocytes, prioritized genes which have not been previously studied in adipose tissue, and used public human and mouse data to nominate 53 novel key driver genes (10 - 21 from each network) that may regulate fat distribution by altering adipocyte function. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We selected seven genes whose expression is highly correlated with WHRadjBMI to further study their effects on adipogenesis/Wnt signaling (ANAPC2, PSME3, RSPO1, TYRO3) or mitochondrial function (C1QTNF3, MIGA1, PSME3, UBR1).Adipogenesis was inhibited in cells overexpressing ANAPC2 and RSPO1 compared to controls. RSPO1 results are consistent with a positive correlation between gene expression in the subcutaneous depot and WHRadjBMI, therefore lower relative storage in the subcutaneous depot. RSPO1 inhibited adipogenesis by increasing ß-catenin activation and Wnt-related transcription, thus repressing PPARG and CEBPA. PSME3 overexpression led to more adipogenesis than controls. In differentiated adipocytes, MIGA1 and UBR1 downregulation led to mitochondrial dysfunction, with lower oxygen consumption than controls; MIGA1 knockdown also lowered UCP1 expression. SUMMARY: ANAPC2, MIGA1, PSME3, RSPO1, and UBR1 affect adipocyte function and may drive body fat distribution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA