Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 30(14): 24676-24688, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237016

RESUMEN

The electromagnetically induced transparency (EIT) effect realized in a metasurface is potential for slow light applications for its extreme dispersion variation in the transparency window. Herein, we propose an all-dielectric metasurface to generate a double resonance-trapped quasi bound states in the continuum (BICs) in the form of EIT or Fano resonance through selectively exciting the guiding modes with the grating. The group delay of the EIT is effectively improved up to 2113 ps attributing to the ultrahigh Q-factor resonance carried by the resonance-trapped quasi-BIC. The coupled harmonic oscillator model and a full multipole decomposition are utilized to analyze the physical mechanism of EIT-based quasi-BIC. In addition, the BIC based on Fano and EIT resonance can simultaneously exist at different wavelengths. These findings provide a new feasible platform for slow light devices in the near-infrared region.

2.
Opt Express ; 29(7): 11353-11360, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33820249

RESUMEN

In this paper, we investigated the geometric parametric instability (GPI) in graded-index multimode fibers through the multimode generalized nonlinear Schrödinger equation. Our results clearly and intuitively indicate that the generations of GPI sidebands are nearly synchronous in the spectrums of all modes, and the shapes of these spectrums are nearly the same. The numerical results show that the energies of the GPI sidebands come from the pump sideband, and these sidebands are carried by similar spatial beam profiles due to the similar modal components. We also found that the large modal dispersion has an influence for the symmetry of these GPI sidebands.

3.
Opt Express ; 28(7): 9666-9676, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32225569

RESUMEN

We report the generation of vortex soliton molecules (VSMs) in a passively mode-locked fiber laser based on a mode selective coupler (MSC). ±1-order VSMs with variable numbers of molecules are observed. By adjusting the polarization state of the light in the cavity, we further demonstrate the process in which one VSM splits to multiple. During this process, the number of the solitons inside the VSM also varies and their separation gradually increases while the spectral modulation being unobservable, and vice versa. The obtained results have potential applications in fields of optical communications, especially in information coding.

4.
Nanomaterials (Basel) ; 10(2)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013078

RESUMEN

In this paper, we numerically and theoretically study the tunable plasmonically induced transparency (PIT) effect based on the graphene metasurface structure consisting of a graphene cut wire (CW) resonator and double split-ring resonators (SRRs) in the middle infrared region (MIR). Both the theoretical calculations according to the coupled harmonic oscillator model and simulation results indicate that the realization of the PIT effect significantly depends on the coupling distance and the coupling strength between the CW resonator and SRRs. In addition, the geometrical parameters of the CW resonator and the number of the graphene layers can alter the optical response of the graphene structure. Particularly, compared with the metal-based metamaterial, the PIT effect realized in the proposed metasurface can be flexibly modulated without adding other actively controlled materials and reconstructing the structure by taking advantage of the tunable complex surface conductivity of the graphene. These results could find significant applications in ultrafast variable optical attenuators, sensors and slow light devices.

5.
Nanomaterials (Basel) ; 9(1)2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30577616

RESUMEN

In this paper, we propose a metamaterial structure for realizing the electromagnetically induced transparency effect in the MIR region, which consists of a gold split-ring and a graphene split-ring. The simulated results indicate that a single tunable transparency window can be realized in the structure due to the hybridization between the two rings. The transparency window can be tuned individually by the coupling distance and/or the Fermi level of the graphene split-ring via electrostatic gating. These results could find significant applications in nanoscale light control and functional devices operating such as sensors and modulators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA