Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 623(7987): 562-570, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880372

RESUMEN

Vision enables both image-forming perception, driven by a contrast-based pathway, and unconscious non-image-forming circadian photoentrainment, driven by an irradiance-based pathway1,2. Although two distinct photoreceptor populations are specialized for each visual task3-6, image-forming photoreceptors can additionally contribute to photoentrainment of the circadian clock in different species7-15. However, it is unknown how the image-forming photoreceptor pathway can functionally implement the segregation of irradiance signals required for circadian photoentrainment from contrast signals required for image perception. Here we report that the Drosophila R8 photoreceptor separates image-forming and irradiance signals by co-transmitting two neurotransmitters, histamine and acetylcholine. This segregation is further established postsynaptically by histamine-receptor-expressing unicolumnar retinotopic neurons and acetylcholine-receptor-expressing multicolumnar integration neurons. The acetylcholine transmission from R8 photoreceptors is sustained by an autocrine negative feedback of the cotransmitted histamine during the light phase of light-dark cycles. At the behavioural level, elimination of histamine and acetylcholine transmission impairs R8-driven motion detection and circadian photoentrainment, respectively. Thus, a single type of photoreceptor can achieve the dichotomy of visual perception and circadian photoentrainment as early as the first visual synapses, revealing a simple yet robust mechanism to segregate and translate distinct sensory features into different animal behaviours.


Asunto(s)
Ritmo Circadiano , Drosophila melanogaster , Células Fotorreceptoras de Invertebrados , Percepción Visual , Animales , Acetilcolina/metabolismo , Relojes Biológicos/fisiología , Relojes Biológicos/efectos de la radiación , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Drosophila melanogaster/efectos de la radiación , Retroalimentación Fisiológica , Histamina/metabolismo , Neurotransmisores/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Receptores Colinérgicos/metabolismo , Receptores Histamínicos/metabolismo , Percepción Visual/fisiología , Percepción Visual/efectos de la radiación
2.
Sensors (Basel) ; 23(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37447733

RESUMEN

In the communication-based train control (CBTC) system, traditional modes such as LTE or WLAN in train-to-train (T2T) communication face the problem of a complex and costly deployment of base stations and ground core networks. Therefore, the multi-hop ad hoc network, which has the characteristics of being relatively flexible and cheap, is considered for CBTC. However, because of the high mobility of the train, it is likely to move out of the communication range of wayside nodes. Moreover, some wayside nodes are heavily congested, resulting in long packet queuing delays that cannot meet the transmission requirements. To solve these problems, in this paper, we investigate the next-hop relay selection problem in multi-hop ad hoc networks to minimize transmission time, enhance the network throughput, and ensure the channel quality. In addition, we propose a multiagent dueling deep Q learning (DQN) algorithm to optimize the delay and throughput of the entire link by selecting the next-hop relay node. The simulation results show that, compared with the existing routing algorithms, it has obvious improvement in the aspects of delay, throughput, and packet loss rate.


Asunto(s)
Redes de Comunicación de Computadores , Tecnología Inalámbrica , Simulación por Computador , Comunicación , Algoritmos
3.
World J Clin Cases ; 12(11): 1900-1908, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38660542

RESUMEN

The coexistence of venous thromboembolism (VTE) within patients with cancer, known as cancer-associated thrombosis (CAT), stands as a prominent cause of mortality in this population. Over recent years, the incidence of VTE has demonstrated a steady increase across diverse tumor types, influenced by several factors such as patient management, tumor-specific risks, and treatment-related aspects. Furthermore, mutations in specific genes have been identified as potential contributors to increased CAT occurrence in particular cancer subtypes. We conducted an extensive review encompassing pivotal historical and ongoing studies on CAT. This review elucidates the risks, mechanisms, reliable markers, and risk assessment methodologies that can significantly guide effective interventions in clinical practice.

4.
Sci Rep ; 14(1): 14012, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890346

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous hematological tumor with poor immunotherapy effect. This study was to develop a monocyte/macrophage-related prognostic risk score (MMrisk) and identify new therapeutic biomarkers for AML. We utilized differentially expressed genes (DEGs) in combination with single-cell RNA sequencing to identify monocyte/macrophage-related genes (MMGs). Eight genes were selected for the construction of a MMrisk model using univariate Cox regression analysis and LASSO regression analysis. We then validated the MMrisk on two GEO datasets. Lastly, we investigated the immunologic characteristics and advantages of immunotherapy and potential targeted drugs for MMrisk groups. Our study identified that the MMrisk is composed of eight MMGs, including HOPX, CSTB, MAP3K1, LGALS1, CFD, MXD1, CASP1 and BCL2A1. The low MMrisk group survived longer than high MMrisk group (P < 0.001). The high MMrisk group was positively correlated with B cells, plasma cells, CD4 memory cells, Mast cells, CAFs, monocytes, M2 macrophages, Endothelial, tumor mutation, and most immune checkpoints (PD1, Tim-3, CTLA4, LAG3). Furthermore, drug sensitivity analysis showed that AZD.2281, Axitinib, AUY922, ABT.888, and ATRA were effective in high-risk MM patients. Our research shows that MMrisk is a potential biomarker which is helpful to identify the molecular characteristics of AML immunology.


Asunto(s)
Leucemia Mieloide Aguda , Macrófagos , Monocitos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/mortalidad , Monocitos/inmunología , Monocitos/metabolismo , Pronóstico , Macrófagos/inmunología , Macrófagos/metabolismo , Femenino , Biomarcadores de Tumor/genética , Masculino , Persona de Mediana Edad , Inmunoterapia/métodos , Transcriptoma , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica
5.
Nat Commun ; 14(1): 1568, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944634

RESUMEN

As a central part of the mammalian brain, the prefrontal cortex (PFC) has been implicated in regulating cocaine-induced behaviors including compulsive seeking and reinstatement. Although dysfunction of the PFC has been reported in animal and human users with chronic cocaine abuse, less is known about how the PFC is involved in cocaine-induced behaviors. By using two-photon Ca2+ imaging to simultaneously record tens of intact individual networking neurons in the frontal association cortex (FrA) in awake male mice, here we report that a systematic acute cocaine exposure decreased the FrA neural activity in mice, while the chemogenetic intervention blocked the cocaine-induced locomotor sensitization. The hypoactivity of FrA neurons was critically dependent on both dopamine transporters and dopamine transmission in the ventromedial PFC (vmPFC). Both dopamine D1R and D2R neurons in the vmPFC projected to and innervated FrA neurons, the manipulation of which changed the cocaine-induced hypoactivity of the FrA and locomotor sensitization. Together, this work demonstrates acute cocaine-induced hypoactivity of FrA neurons in awake mice, which defines a cortico-cortical projection bridging dopamine transmission and cocaine sensitization.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Humanos , Ratones , Masculino , Animales , Cocaína/farmacología , Dopamina/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Encéfalo/metabolismo , Corteza Prefrontal/fisiología , Mamíferos/metabolismo
6.
Sci Adv ; 8(35): eabo5506, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36054358

RESUMEN

The master circadian clock generates 24-hour rhythms to orchestrate daily behavior, even running freely under constant conditions. Traditionally, the master clock is considered self-sufficient in sustaining free-running timekeeping via its cell-autonomous molecular clocks and interneuronal communications within the circadian neural network. Here, we find a set of bona fide ultradian oscillators in the Drosophila brain that support free-running timekeeping, despite being located outside the master clock circuit and lacking clock gene expression. These extra-clock electrical oscillators (xCEOs) generate cell-autonomous ultradian bursts, pacing widespread burst firing and promoting rhythmic resting membrane potentials in clock neurons via parallel monosynaptic connections. Silencing xCEOs disrupts daily electrical rhythms in clock neurons and impairs cycling of neuropeptide pigment dispersing factor, leading to the loss of free-running locomotor rhythms. Together, we conclude that the master clock is not self-sufficient to sustain free-running behavior rhythms but requires additional endogenous inputs to the clock from the extra-clock ultradian brain oscillators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA