Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cardiovasc Pharmacol ; 79(4): 444-455, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34983907

RESUMEN

ABSTRACT: The abnormal proliferation of vascular smooth muscle cells (VSMCs) is a key pathological characteristic of vascular proliferative diseases. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays an important role in regulating cell growth, motility, proliferation, and survival, as well as gene expression in response to hypoxia, growth factors, and nutrients. Increasing evidence shows that mTOR also regulates VSMC proliferation in vascular proliferative diseases and that mTOR inhibitors, such as rapamycin, effectively restrain VSMC proliferation. However, the molecular mechanisms linking mTOR to vascular proliferative diseases remain elusive. In our review, we summarize the key roles of the mTOR and the recent discoveries in vascular proliferative diseases, focusing on the therapeutic potential of mTOR inhibitors to target the mTOR signaling pathway for the treatment of vascular proliferative diseases. In this study, we discuss mTOR inhibitors as promising candidates to prevent VSMC-associated vascular proliferative diseases.


Asunto(s)
Sirolimus , Enfermedades Vasculares , Proliferación Celular , Humanos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Sirolimus/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Enfermedades Vasculares/metabolismo
2.
Physiol Plant ; 172(1): 64-76, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33247451

RESUMEN

Chalcone synthase (CHS) is the key enzyme in the flavonoid biosynthetic pathway and has been studied in many plants, but the function of the CHS gene has not been well characterized in Paeonia ostii. In this study, we obtained a CHS homolog gene from P. ostii, which possessed the putative conserved amino acids of chalcone synthase by multiple alignment analysis and demonstrated the highest expression in developing seeds. In vitro assays of the recombinant PoCHS protein confirmed enzymatic activity using malonyl-CoA and 4-coumaroyl-CoA as substrates, and the optimal pH and reaction temperature were 7.5 and 40 °C, respectively. Furthermore, ectopic over-expression of PoCHS in Arabidopsis up-regulated the expression levels of genes involved in seed development (ABI), glycolysis (PKp2, PDH-E1a, and SUS2/3), and especially fatty acid biosynthesis (BCCP2, CAC2, CDS2, FatA, and FAD3). This resulted in an increased unsaturated fatty acid content, especially α-linolenic acid, in transgenic Arabidopsis seeds. In this study, we examined the functions of CHS homolog of P. ostii and demonstrated its new function in seed fatty acid biosynthesis.


Asunto(s)
Arabidopsis , Paeonia , Arabidopsis/genética , Vías Biosintéticas/genética , Ácidos Grasos , Paeonia/genética , Semillas/genética
3.
Physiol Plant ; 168(3): 660-674, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31343741

RESUMEN

Arabidopsis thaliana ENO2 (AtENO2) plays an important role in plant growth and development. It encodes two proteins, a full-length AtENO2 and a truncated version, AtMBP-1, alternatively translated from the second start codon of the mRNA. The AtENO2 mutant (eno2- ) exhibited reduced leaf size, shortened siliques, a dwarf phenotype and higher sensitivity to abiotic stress. The objectives of this study were to analyze the regulatory network of the ENO2 gene in plant growth development and understand the function of AtENO2/AtMBP-1 to abiotic stresses. An eno2- /35S:AtENO2-GFP line and an eno2- /35S:AtMBP-1-GFP line of Arabidopsis were obtained. Results of sequencing by 454 GS FLX identified 578 upregulated and 720 downregulated differential expressed genes (DEGs) in a pairwise comparison (WT-VS-eno2- ). All the high-quality reads were annotated using the Gene Ontology (GO) terms. The DEGs with KEGG pathway annotations occurred in 110 pathways. The metabolic pathways and biosynthesis of secondary metabolites contained more DEGs. Moreover, the eno2- /35S:AtENO2-GFP line returned to the wild-type (WT) phenotype and was tolerant to drought and salt stresses. However, the eno2- /35S:AtMBP-1-GFP line was not able to recover the WT phenotype but it has a higher tolerance to drought and salt stresses. Results from this study demonstrate that AtENO2 is critical for the growth and development, and the AtMBP-1 coded by AtENO2 is important in tolerance of Arabidopsis to abiotic stresses.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Sequías , Estrés Salino , Proteínas Portadoras , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente
4.
Pestic Biochem Physiol ; 168: 104618, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32711759

RESUMEN

The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is a polyphagous agricultural pest with an extensive host plant range. Scopoletin is a promising acaricidal compound whose acaricidal mechanism may occur by disrupting intracellular Ca2+ homeostasis and calcium signaling pathways. However, the underlying mechanism of scopoletin for specific target locations of T. cinnabarinus remains unclear. In this study, a full-length cDNA of the L-type voltage-gated calcium channel (TcLTCC) subunit gene from T. cinnabarinus was cloned and characterized. The expression pattern of the TcLTCC gene in all developmental stages of T. cinnabarinus was analyzed. The gene was highly expressed in larval and nymphal stages and was significantly upregulated after treatment with scopoletin. Knocking down the TcLTCC transcript reduced the sensitivity of T. cinnabarinus to scopoletin. Homology modeling and molecular docking were also conducted. The interaction between scopoletin and TcLTCC showed that scopoletin inserted into the cavity bound to the site of the TcLTCC protein by the driving force of hydrogen bonding. This study provides insights into the mechanism by which scopoletin interacts with TcLTCC. Results can improve the understanding of the toxicity of scopoletin to T. cinnabarinus and provide valuable information for the design of new LTCC inhibitors.


Asunto(s)
Acaricidas , Tetranychidae , Animales , Calcio , Simulación del Acoplamiento Molecular , Escopoletina
5.
Circ J ; 82(11): 2861-2871, 2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30232292

RESUMEN

BACKGROUND: Lipoprotein lipase (LPL) plays an important role in triglyceride metabolism. It is translocated across endothelial cells to reach the luminal surface of capillaries by glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1), where it hydrolyzes triglycerides in lipoproteins. MicroRNA 377 (miR-377) is highly associated with lipid levels. However, how miR-377 regulates triglyceride metabolism and whether it is involved in the development of atherosclerosis remain largely unexplored. Methods and Results: The clinical examination displayed that miR-377 expression was markedly lower in plasma from patients with hypertriglyceridemia compared with non-hypertriglyceridemic subjects. Bioinformatics analyses and a luciferase reporter assay showed that DNA methyltransferase 1 (DNMT1) was a target gene of miR-377. Moreover, miR-377 increased LPL binding to GPIHBP1 by directly targeting DNMT1 in human umbilical vein endothelial cells (HUVECs) and apolipoprotein E (ApoE)-knockout (KO) mice aorta endothelial cells (MAECs). In vivo, hematoxylin-eosin (H&E), Oil Red O and Masson's trichrome staining showed that ApoE-KO mice treated with miR-377 developed less atherosclerotic plaques, accompanied by reduced plasma triglyceride levels. CONCLUSIONS: It is concluded that miR-377 upregulates GPIHBP1 expression, increases the LPL binding to GPIHBP1, and reduces plasma triglyceride levels, likely through targeting DNMT1, inhibiting atherosclerosis in ApoE-KO mice.


Asunto(s)
Aorta/metabolismo , Aterosclerosis/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , MicroARNs/metabolismo , Placa Aterosclerótica/metabolismo , Triglicéridos/metabolismo , Animales , Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , ADN (Citosina-5-)-Metiltransferasa 1/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Ratones , Ratones Noqueados para ApoE , MicroARNs/genética , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología , Receptores de Lipoproteína/biosíntesis , Receptores de Lipoproteína/genética
6.
Yi Chuan ; 40(8): 607-619, 2018 Aug 16.
Artículo en Zh | MEDLINE | ID: mdl-30117417

RESUMEN

The translation of mRNA is a complicated multi-step process, including initiation, elongation and termination. Among them, the regulation of the initial stage plays the key role. There are many ways to initiate mRNA translation, and the most classical way is the m 7G cap-dependent scanning mechanism that was also the first mechanism identified. When cells encounter adversity and the classical mechanism is inhibited, other types of translation initiation mechanisms will be activated. In this review, we summarize the translation initiation mechanisms of eukaryotic mRNAs, especially some alternative mechanisms. It will provide a reference for further understanding of the expression and regulation of eukaryotic genes at the translation levels.


Asunto(s)
Eucariontes/genética , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/genética , Animales , Eucariontes/metabolismo , Humanos , ARN Mensajero/metabolismo
7.
Opt Express ; 23(4): 4703-14, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25836507

RESUMEN

An approach extracting information of both optical monitoring signal and phase thickness of deposited layer on a trace diagram is proposed. Realtime fitting and calculation are performed to get both practical thickness and refractive index of deposited layer with the assist of quartz crystal monitoring for keeping steady rate of deposition. Monitoring error of thickness using this approach is analyzed. It was used to obtain the refractive indices and thickness of Ge layer and SiO layer in in situ measurement mode, and the results were compared with those of ex-situ spectral measurement using infrared spectrometer. The effectiveness of the proposed monitoring method was verified by fabricating narrow bandpass filter consisting of quarter-wave and non-quarter-wave layers.

8.
J Food Sci Technol ; 52(3): 1304-15, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25745199

RESUMEN

The technology of quick-freezing paste-coated mushrooms (Agaricus bisporus) was studied and optimized. The best microwave pretreatment condition for 1 cm slices, regarding color protection, was 5.4 W/g, for 55, 55-60 and 60 s for mushrooms with 3, 4 and 5 cm diameter caps respectively. For a batch of paste (668.2-1034.6 g), the process parameters considered were oil content (46.6-63.4 g), water content (381-562.6 g) and flour content (166-334 g) with a constant additional content of 30 g starch, 9 g baking powder, 2.6 g carrageenan, 30 g salt and 3 g pepper. These parameters were investigated using response surface methodology (RSM) with a central composite design. The optimal levels of the major paste components were 300 g flour, 432.5 g water and 50 g oil. The freezing time and sensory acceptability for paste-coated Agaricus bisporus(PCAB) under the optimized conditions were 7.49 min and 6.2 respectively. The freezing curves of PCAB were established at different temperatures and the freezing rates were calculated to find the freezing characteristics. In addition, the cell structure of PCAB, frozen at -75 °C, the lowest freezing temperature, and studied using transmission electron microscopy, was similar in quality to that of fresh Agaricus bisporus. The results suggested that Agaricus bisporus can be quick-frozen with a paste coating to produce an acceptable and nutritious convenience food.

9.
PeerJ Comput Sci ; 10: e2010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145203

RESUMEN

Personalized learning resource recommendations may help resolve the difficulties of online education that include learning mazes and information overload. However, existing personalized learning resource recommendation algorithms have shortcomings such as low accuracy and low efficiency. This study proposes a deep recommendation system algorithm based on a knowledge graph (D-KGR) that includes four data processing units. These units are the recommendation unit (RS unit), the knowledge graph feature representation unit (KGE unit), the cross compression unit (CC unit), and the feature extraction unit (FE unit). This model integrates technologies including the knowledge graph, deep learning, neural network, and data mining. It introduces cross compression in the feature learning process of the knowledge graph and predicts user attributes. Multimodal technology is used to optimize the process of project attribute processing; text type attributes, multivalued type attributes, and other type attributes are processed separately to reconstruct the knowledge graph. A convolutional neural network algorithm is introduced in the reconstruction process to optimize the data feature qualities. Experimental analysis was conducted from two aspects of algorithm efficiency and accuracy, and the particle swarm optimization, neural network, and knowledge graph algorithms were compared. Several tests showed that the deep recommendation system algorithm had obvious advantages when the number of learning resources and users exceeded 1,000. It has the ability to integrate systems such as the particle swarm optimization iterative classification, neural network intelligent simulation, and low resource consumption. It can quickly process massive amounts of information data, reduce algorithm complexity and requires less time and had lower costs. Our algorithm also has better efficiency and accuracy.

10.
Anatol J Cardiol ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39378323

RESUMEN

BACKGROUND: Viral myocarditis (VMC) is a common cardiovascular disease, and circular RNAs (circRNAs) have been identified to play an important role in the pathophysiology of cardiovascular disease. However, the clinical significance, biological functions, and regulatory mechanisms of circRNAs in VMC remain poorly understood. Therefore, this study explored the biological functions and regulatory mechanisms of circ-ACSL1 in VMC. METHODS: The animal and cell models of VMC were established by infecting BABL/C mice and interleukin-2 cells with coxsackievirus B3 (CVB3). Pro-inflammatory factors, markers of myocardial injury, apoptosis, and autophagy were detected to evaluate the degree of myocardial inflammation and myocardial injury after altering circ-ACSL1, microRNA-7-5p (miR-7-5p), and X-box binding protein 1 (XBP1) expression alone or in combination. RESULTS: Knocking down circ-ACSL1 could inhibit inflammation, autophagy, and apoptosis in VMC animals and cells. Mechanistically, circ-ACSL1 targeted miR-7-5p to regulate the downstream target XBP1. In addition, depleting miR-7-5p rescued the therapeutic effect of depleting circ-ACSL1. Overexpression of circ-ACSL1 aggravated VMC; however, this effect was saved by knocking down XBP1. CONCLUSION: By competitively absorbing miR-7-5p, circ-ACSL1 increases XBP1 expression and aggravates myocardial inflammation. Meaningfully, VMC treatment may benefit from circ-ACSL1 as a potential biomarker for precise diagnosis and as a potential therapeutic target.

11.
Exp Ther Med ; 28(4): 394, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39171148

RESUMEN

Pulmonary arterial hypertension (PAH) is a common vascular disease, and pulmonary vascular remodeling is a pivotal pathophysiological mechanism of PAH. Major pathological changes of pulmonary arterial remodeling, including proliferation, hypertrophy and enhanced secretory activity, can occur in pulmonary artery smooth muscle cells (PASMCs). Multiple active factors and cytokines play important roles in PAH. However, the regulatory mechanisms of the active factors and cytokines in PAH remain unclear. The present study aimed to reveal the crucial role of PASMC pyroptosis in PAH and to elucidate the intrinsic mechanisms. To establish the PAH rat models, Sprague-Dawley rats were injected intraperitoneally with monocrotaline (MCT) at a dose of 60 mg/kg. The expression of proteins and interleukins were detected by western blotting and ELISA assay. The results indicated that the pyroptosis of PASMCs is significantly increased in MCT-induced PAH rats. Notably, pyroptotic PASMCs can secret IL-1ß and IL-18 to promote the proliferation of PASMCs. On this basis, inhibiting the secretion of IL-1ß and IL-18 can markedly inhibit PASMC proliferation. Collectively, the findings of the present study indicate a critical role for PASMC pyroptosis in MCT-induced PAH rats, prompting a new preventive and therapeutic strategy for PAH.

12.
Atherosclerosis ; 390: 117430, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38301602

RESUMEN

BACKGROUND AND AIMS: Tripartite motif (TRIM65) is an important member of the TRIM protein family, which is a newly discovered E3 ligase that interacts with and ubiquitinates various substrates and is involved in diverse pathological processes. However, the function of TRIM65 in atherosclerosis remains unarticulated. In this study, we investigated the role of TRIM65 in the pathogenesis of atherosclerosis, specifically in vascular smooth muscle cells (VSMCs) phenotype transformation, which plays a crucial role in formation of atherosclerotic lesions. METHODS AND RESULTS: Both non-atherosclerotic and atherosclerotic lesions during autopsy were collected singly or pairwise from each individual (n = 16) to investigate the relationship between TRIM65 and the development of atherosclerosis. In vivo, Western diet-fed ApoE-/- mice overexpressing or lacking TRIM65 were used to assess the physiological function of TRIM65 on VSMCs phenotype, proliferation and atherosclerotic lesion formation. In vitro, VSMCs phenotypic transformation was induced by platelet-derived growth factor-BB (PDGF-BB). TRIM65-overexpressing or TRIM65-abrogated primary mouse aortic smooth muscle cells (MOASMCs) and human aortic smooth muscle cells (HASMCs) were used to investigate the mechanisms underlying the progression of VSMCs phenotypic transformation, proliferation and migration. Increased TRIM65 expression was detected in α-SMA-positive cells in the medial and atherosclerotic lesions of autopsy specimens. TRIM65 overexpression increased, whereas genetic knockdown of TRIM65 remarkably inhibited, atherosclerotic plaque development. Mechanistically, TRIM65 overexpression activated PI3K/Akt/mTOR signaling, resulting in the loss of the VSMCs contractile phenotype, including calponin, α-SMA, and SM22α, as well as cell proliferation and migration. However, opposite phenomena were observed when TRIM65 was deficient in vivo or in vitro. Moreover, in cultured PDGF-BB-induced TRIM65-overexpressing VSMCs, inhibition of PI3K by treatment with the inhibitor LY-294002 for 24 h markedly attenuated PI3K/Akt/mTOR activation, regained the VSMCs contractile phenotype, and blocked the progression of cell proliferation and migration. CONCLUSIONS: TRIM65 overexpression enhances atherosclerosis development by promoting phenotypic transformation of VSMCs from contractile to synthetic state through activation of the PI3K/Akt/mTOR signal pathway.


Asunto(s)
Aterosclerosis , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Becaplermina/genética , Becaplermina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Músculo Liso Vascular/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Movimiento Celular , Transducción de Señal , Proliferación Celular , Serina-Treonina Quinasas TOR/metabolismo , Aterosclerosis/patología , Miocitos del Músculo Liso/patología , Fenotipo , Células Cultivadas , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética
13.
Acta Cardiol ; : 1-9, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37260124

RESUMEN

Background: Coronary atherosclerotic heart disease (CAD) is an inflammatory vascular disease caused by atherosclerosis. Long non-coding RNAs are involved in the pathophysiological process of coronary heart disease. Here we investigated the regulatory effects of lncRNA PVT1 (PVT1) in human coronary artery endothelial cells (HCAECs).Methods: qRT-PCR and western blot were performed to detect gene and protein expressions. CCK-8, flow cytometry and wound healing assays were used to determine cell viability, apoptosis and migration of HCAECs. The binding relationship among miR-532-3p, PVT1 and MAPK1 was verified by dual luciferase reporter assay.Results: Overexpression of PVT1 markedly reduced cell apoptosis and increased cell proliferation and migration. However, miR-532-3p upregulation suppressed cell proliferation and migration and promoted apoptosis of HCAECs. PVT1 suppressed the expression of miR-532-3p via directly targeting miR-532-3p. And miR-532-3p overexpression abolished the effect of PVT1 upregulation on proliferation and apoptosis in HCAECs. Furthermore, MAPK1 acted as a target gene of miR-532-3p and miR-532-3p inhibited MAPK1 expression.Conclusion: PVT1 promoted MAPK1 expression by targeting miR-532-3p, thus inhibiting HCAECs apoptosis and promoting cell proliferation, suggesting PVT1 might have great potential as a therapeutic target for CAD.

14.
Curr Med Chem ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608612

RESUMEN

BACKGROUND AND OBJECTIVE: Endothelial cell activation, characterized by increased levels of vascular cell adhesion molecule 1 (VCAM-1), plays a crucial role in the development of atherosclerosis (AS). Therefore, inhibition of VCAM-1-mediated inflammatory response is of great significance in the prevention and treatment of AS. The tripartite motif (TRIM) protein-TRIM65 is involved in the regulation of cancer development, antivirals and inflammation. We aimed to study the functions of TRIM65 in regulating endothelial inflammation by interacting with VCAM-1 in atherogenesis. METHODS AND RESULTS: In vitro, we report that human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (oxLDL) significantly upregulate the expression of TRIM65 in a time- and dose-dependent manner. Overexpression of TRIM65 reduces oxLDL-triggered VCAM-1 protein expression, decreases monocyte adhesion to HUVECs and inhibits the production of the inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α as well as endothelial oxLDL transcytosis. In contrast, siRNA-mediated knockdown of TRIM65 promotes the expression of VCAM-1, resulting in increased adhesion of monocytes and the release of the inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α and enhances endothelial oxLDL transcytosis. In vivo, we measured the high expression of TRIM65 in ApoE-/- mouse aortic plaques compared to C57BL/6J mouse aortic plaques. Then, we examined whether the blood levels of VCAM-1 were higher in TRIM65 knockout ApoE-/- mice than in control mice induced by a Western diet. Furthermore, Western blot results showed that the protein expression of VCAM-1 was markedly enhanced in TRIM65 knockout ApoE-/- mouse aortic tissues compared to that of the controls. Immunofluorescence staining revealed that the expression of VCAM-1 was significantly increased in atherosclerotic plaques of TRIM65-/-/ApoE-/- aortic vessels compared to ApoE-/- controls. Mechanistically, TRIM65 specifically interacts with VCAM-1 and targets it for K48-linked ubiquitination. CONCLUSION: Our studies indicate that TRIM65 attenuates the endothelial inflammatory response by targeting VCAM-1 for ubiquitination and provides a potential therapeutic target for the inhibition of endothelial inflammation in AS.

15.
Curr Med Sci ; 42(4): 778-784, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35727419

RESUMEN

OBJECTIVE: To determine the clinical characteristics and prognosis of primary tracheobronchial tumors (PTTs) in children, and to explore the most common tumor identification methods. METHODS: The medical records of children with PTTs who were hospitalized at the Children's Hospital of Chongqing Medical University from January 1995 to January 2020 were reviewed retrospectively. The clinical features, imaging, treatments, and outcomes of these patients were statistically analyzed. Machine learning techniques such as Gaussian naïve Bayes, support vector machine (SVM) and decision tree models were used to identify mucoepidermoid carcinoma (ME). RESULTS: A total of 16 children were hospitalized with PTTs during the study period. This included 5 (31.3%) children with ME, 3 (18.8%) children with inflammatory myofibroblastic tumors (IMT), 2 children (12.5%) with sarcomas, 2 (12.5%) children with papillomatosis and 1 child (6.3%) each with carcinoid carcinoma, adenoid cystic carcinoma (ACC), hemangioma, and schwannoma, respectively. ME was the most common tumor type and amongst the 3 ME recognition methods, the SVM model showed the best performance. The main clinical symptoms of PPTs were cough (81.3%), breathlessness (50%), wheezing (43.8%), progressive dyspnea (37.5%), hemoptysis (37.5%), and fever (25%). Of the 16 patients, 7 were treated with surgery, 8 underwent bronchoscopic tumor resection, and 1 child died. Of the 11 other children, 3 experienced recurrence, and the last 8 remained disease-free. No deaths were observed during the follow-up period. CONCLUSION: PTT are very rare in children and the highest percentage of cases is due to ME. The SVM model was highly accurate in identifying ME. Chest CT and bronchoscopy can effectively diagnose PTTs. Surgery and bronchoscopic intervention can both achieve good clinical results and the prognosis of the 11 children that were followed up was good.


Asunto(s)
Neoplasias de los Bronquios , Carcinoma Mucoepidermoide , Teorema de Bayes , Neoplasias de los Bronquios/diagnóstico por imagen , Neoplasias de los Bronquios/cirugía , Broncoscopía/métodos , Carcinoma Mucoepidermoide/diagnóstico por imagen , Carcinoma Mucoepidermoide/cirugía , Niño , Humanos , Estudios Retrospectivos
16.
Bioorg Med Chem Lett ; 21(16): 4742-4, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21752639

RESUMEN

Development of fatty acid synthase (FAS) inhibitors has increasingly attracted much attention in recent years due to their potential therapeutic use in obesity and cancers. In this investigation, pharmacophore modeling based on the first crystal structure of human KS domain of FAS was carried out. The established pharmacophore model was taken as a 3D query for retrieving potent FAS inhibitors from the chemical database Specs. Docking study was further carried out to refine the obtained hit compounds. Finally, a total of 28 compounds were selected based on the ranking order and visual examination, which were first evaluated by a cell line-based assay. Seven compounds that have good inhibition activity against two FAS overexpressing cancer cell lines were further evaluated by an enzyme-based assay. One compound with a new chemical scaffold was found to have low micromolar inhibition potency against FAS, which has been subjected to further chemical structural modification.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ácido Graso Sintasas/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
17.
J Cardiol ; 78(6): 586-597, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34489160

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is a common heart disease with high incidence and mortality. Myocardial ischemia is the main type of CAD, which negatively affects health worldwide. The aim of the present study was to investigate the function and mechanism of myocardial infarction-associated transcript (MIAT) in myocardial ischemia. METHODS: Human cardiomyocytes (HCM) were treated with oxygen-glucose deprivation (OGD) to set the in vitro model and mouse myocardial ischemia/reperfusion (I/R) was set for in vivo model. Cell viability and apoptosis were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, flow cytometry, and immunofluorescence analysis. Inflammatory cytokines levels were detected by enzyme-linked immunosorbent assay. Gene and protein expressions were identified by quantitative real time-polymerase chain reaction or Western blotting. The interaction of MIAT, miR-181a-5p, and janus kinase 2 (JAK2) was identified by dual-luciferase report assay. Mouse heart tissues histopathological condition were observed by hematoxylin and eosin assays. RESULTS: Expression of MIAT and JAK2 were increased in OGD-treated HCM and mice of I/R model group, and miR-181a-5p was decreased. MIAT silencing could reverse the OGD treatment induced cell proliferation inhibition, cleaved caspase-3 and Bcl2-associated X (Bax) levels increased, while those of B-cell lymphoma-2 (Bcl-2) and mitochondria's cyt-C decreased. Besides, MIAT knockdown attenuated the OGD-induced increase of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 levels. Moreover, MIAT targeted miR-181a-5p to enhance the expression of JAK2 and signal Transducer and Activator of Transcription 3 (STAT3), and miR-181a-5p overexpression promoted proliferation, whereas it inhibited apoptosis in OGD-induced cardiomyocytes. Furthermore, the regulatory effects of MIAT knockdown in cell proliferation, apoptosis, and inflammatory injury was reversed by inhibition of miR-181a-5p or overexpression of JAK2 in OGD-treated HCM. Knockdown of MIAT reduced myocardial injury caused by I/R treatment in vivo. CONCLUSION: MIAT knockdown inhibited apoptosis and inflammation by regulating JAK2/STAT3 signaling pathway via targeting miR-181a-5p in myocardial ischemia model. MIAT can be a possible therapeutic target for controlling the progression of myocardial ischemia.


Asunto(s)
MicroARNs , Infarto del Miocardio , ARN Largo no Codificante , Animales , Apoptosis , Glucosa , Humanos , Janus Quinasa 2/metabolismo , Ratones , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Oxígeno , ARN Largo no Codificante/genética , Factor de Transcripción STAT3/metabolismo
18.
Front Physiol ; 12: 656139, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897463

RESUMEN

Pulmonary hypertension (PH) is a critical and dangerous disease in cardiovascular system. Pulmonary vascular remodeling is an important pathophysiological mechanism for the development of pulmonary arterial hypertension. Pulmonary artery smooth muscle cell (PASMC) proliferation, hypertrophy, and enhancing secretory activity are the main causes of pulmonary vascular remodeling. Previous studies have proven that various active substances and inflammatory factors, such as interleukin 6 (IL-6), IL-8, chemotactic factor for monocyte 1, etc., are involved in pulmonary vascular remodeling in PH. However, the underlying mechanisms of these active substances to promote the PASMC proliferation remain to be elucidated. In our study, we demonstrated that PASMC senescence, as a physiopathologic mechanism, played an essential role in hypoxia-induced PASMC proliferation. In the progression of PH, senescence PASMCs could contribute to PASMC proliferation via increasing the expression of paracrine IL-6 (senescence-associated secretory phenotype). In addition, we found that activated mTOR/S6K1 pathway can promote PASMC senescence and elevate hypoxia-induced PASMC proliferation. Further study revealed that the activation of mTOR/S6K1 pathway was responsible for senescence PASMCs inducing PASMC proliferation via paracrine IL-6. Targeted inhibition of PASMC senescence could effectively suppress PASMC proliferation and relieve pulmonary vascular remodeling in PH, indicating a potential for the exploration of novel anti-PH strategies.

19.
Curr Med Chem ; 28(18): 3666-3680, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33200693

RESUMEN

Atherosclerosis is a chronic arterial wall illness that forms atherosclerotic plaques within the arteries. Plaque formation and endothelial dysfunction are atherosclerosis' characteristics. It is believed that the occurrence and development of atherosclerosis mainly include endothelial cell damage, lipoprotein deposition, inflammation and fibrous cap formation, but its molecular mechanism has not been elucidated. Therefore, protecting the vascular endothelium from damage is one of the key factors against atherosclerosis. The factors and processes involved in vascular endothelial injury are complex. Finding out the key factors and mechanisms of atherosclerosis caused by vascular endothelial injury is an important target for reversing and preventing atherosclerosis. Changes in cell adhesion are the early characteristics of EndMT, and cell adhesion is related to vascular endothelial injury and atherosclerosis. Recent researches have exhibited that endothelial-mesenchymal transition (EndMT) can urge atherosclerosis' progress, and it is expected that inhibition of EndMT will be an object for anti-atherosclerosis. We speculate whether inhibition of EndMT can become an effective target for reversing atherosclerosis by improving cell adhesion changes and vascular endothelial injury. Studies have shown that H2S has a strong cardiovascular protective effect. As H2S has anti- inflammatory, anti-oxidant, inhibiting foam cell formation, regulating ion channels and enhancing cell adhesion and endothelial functions, the current research on H2S in cardiovascular aspects is increasing, but anti-atherosclerosis's molecular mechanism and the function of H2S in EndMT have not been explicit. In order to explore the mechanism of H2S against atherosclerosis, to find an effective target to reverse atherosclerosis, we sum up the progress of EndMT promoting atherosclerosis, and Hydrogen sulfide's potential anti- EndMT effect is discussed in this review.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Aterosclerosis/tratamiento farmacológico , Células Endoteliales , Transición Epitelial-Mesenquimal , Humanos , Transducción de Señal
20.
Bioorg Med Chem Lett ; 20(20): 6045-7, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20817450

RESUMEN

Natural inhibitors of fatty acid synthase (FAS) are emerging as potential therapeutic agents to treat cancer and obesity. The bioassay-guided chemical investigation of the hulls of Garcinia mangostana led to the isolation of 13 phenolic compounds (1-13) mainly including xanthone and benzophenone, in which compounds 7, 8, 9, 10, and 11 were isolated from this plant for the first time and compound 9 was a new natural product. These isolates possess strong inhibitory activity of FAS with the IC(50) values ranging from 1.24 to 91.07 µM. The study indicates that two types of natural products, xanthones and benzophenones, could be considered as promising FAS inhibitors.


Asunto(s)
Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Garcinia mangostana/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Animales , Benzofenonas/química , Benzofenonas/aislamiento & purificación , Benzofenonas/farmacología , Pollos , Inhibidores Enzimáticos/química , Ácido Graso Sintasas/metabolismo , Concentración 50 Inhibidora , Fenoles/química , Xantonas/química , Xantonas/aislamiento & purificación , Xantonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA