Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(1): 969-986, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175117

RESUMEN

We study the nonreciprocal excitation and entanglement dynamics of two giant atoms (GAs) coupling to a one-dimensional waveguide. With different positions of coupling points, three configurations of two separate GAs, two braided GAs, and two nested GAs are analyzed, respectively. The coupling strengths between different coupling points are considered as complex numbers with phases. For each coupling configuration, the nonreciprocal excitation dynamics and entanglement properties, which results from the phase differences of coupling strength and the phase induced by photon propagation between the two coupling points, are studied both in Markovian and non-Markovian regimes. The analytical solutions for nonreciprocal entanglement degree are given in the Markovian regime. It shows that the steady entanglement can be reached and strongly depends on the phases. Different from the case of the Markovian regime, the entanglement degree shows oscillating behavior in the non-Markovian regime. This work may find applications in the generation and controlling of entanglement in quantum networks based on waveguide quantum electrodynamics.

2.
Opt Express ; 31(20): 33015-33025, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859090

RESUMEN

The single photon scattering properties in a waveguide coupling to a giant atom with a three-level system are investigated theoretically. One of the transitions of the giant atom couples to the waveguide at two points while the other one is driven by a classical field. Using the analytical expressions of the single photon scattering amplitudes, the conditions for realizing perfect single photon nonreciprocal scattering are discussed in both Markovian regime and non-Markovian regime. In the Markovian regime, the perfect non-reciprocity can be realized by adjusting the external classical field, the energy dissipation of the giant atom, the phase difference between the two coupling strengths and the accumulated phase resulting from the photon propagating between the two coupling points. In the non-Markovian regime, the non-reciprocal scattering phenomenon becomes more abundant due to the time delay. However, the analytical results show that the perfect non-reciprocity can still be achieved. When the incident photon is resonant with the giant atom, the nonreciprocity can be switched by controlling the classical field. For the non-resonant single photon, one can adjust the Rabi frequency of the classical field to obtain the perfect non-reciprocal single photon transmission. Our work provides a manner to realize a frequency tunable single photon diode.

3.
Opt Express ; 30(13): 23428-23438, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36225022

RESUMEN

We theoretically investigate the single photon scattering properties in a waveguide chirally coupling to a giant atom. The single photon transmission spectrum depends on the direction of the single photon incident when the energy loss of the giant atom can not be neglected. The difference between the transmission probabilities corresponding to opposite transport direction ΔT is calculated. It shows that both of the position and width of the ΔT are dependent on the size of the giant atom. Furthermore, the position of the maximum ΔT and the frequency width of ΔT can be modulated by a classical laser beam. Our results will be beneficial to control single photons in quantum devices design involving giant atoms.

4.
Opt Express ; 29(24): 40116-40124, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809360

RESUMEN

In this work, the single photon scattering due to a giant atom coupled with a pair of waveguides is investigated theoretically. Using the real-space Hamiltonian, four scattering amplitudes are obtained, and the single photon routing properties are studied. Calculations reveal that the single photon routing properties are strongly dependent on the size of the giant atom. The possible physical mechanism is also discussed. To improve routing efficiency, the configuration where one waveguide is terminated is further studied. The calculated results indicate that an incident photon can be transferred to the other waveguide with unit efficiency by choosing the appropriate configuration for a fixed size of the giant atom. Our results may be used in quantum information processing and design quantum devices at single-photon level.

5.
Entropy (Basel) ; 22(2)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33285966

RESUMEN

In this paper, we investigate the entanglement generation of n-qubit states in a model consisting of n independent qubits, each coupled to a harmonic oscillator which is in turn coupled to a bath of N additional harmonic oscillators with nearest-neighbor coupling. With analysis, we can find that the steady multipartite entanglement with different values can be generated after a long-time evolution for different sizes of the quantum system. Under weak coupling between the system and the harmonic oscillator, multipartite entanglement can monotonically increase from zero to a stable value. Under strong coupling, multipartite entanglement generation shows a speed-up increase accompanied by some oscillations as non-Markovian behavior. Our results imply that the strong coupling between the harmonic oscillator and the N additional harmonic oscillators, and the large size of the additional oscillators will enhance non-Markovian dynamics and make it take a very long time for the entanglement to reach a stable value. Meanwhile, the couplings between the additional harmonic oscillators and the decay rate of additional harmonic oscillators have almost no effect on the multipartite entanglement generation. Finally, the entanglement generation of the additional harmonic oscillators is also discussed.

6.
Opt Express ; 26(22): 28872-28878, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30470057

RESUMEN

The single photon scattering in one-dimensional waveguide coupled to two separated atoms is investigated. The first atom is considered as a Λ system and the second one is taken as V -type configuration. The analytical expressions of the single photon scattering spectra are obtained. The calculated results show that the polarization conversion of single photon can be realized by controlling the distance between the two atoms due to the interference effects. The conversion efficiency can reach unit in the ideal case. Furthermore, the polarization conversion of the single photon also depends on the initial state of the Λ system. The influences of dissipations on the single photon polarization conversion are also shown.

7.
Opt Express ; 24(17): 19988-93, 2016 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-27557274

RESUMEN

We investigate single photon transport in two waveguides coupled to a two-level quantum emitter (QE). With the deduced analytical scattering amplitudes, we show that under condition of the chiral coupling between the QE and the photon in the two waveguides, the QE can play the role of ideal quantum router to redirect a single photon incident from one waveguide into the other waveguide with a probability of 100% in the ideal condition. The influences of cross coupling between two waveguides and dissipations on the routing are also shown.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA