Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biomacromolecules ; 23(9): 3766-3778, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35980819

RESUMEN

It is becoming increasingly important to synthesize efficient biomacromolecule lubricants suitable for medical devices. Even though the development of biomimetic lubricants has made great progress, the current system suitable for hydrophobic silicone-based medical devices is highly limited. In this work, we synthesize one kind of novel polysaccharide-derived macromolecule lubricant of chitosan (CS) grafted polyethylene glycol (PEG) chains and catechol groups (CT) (CS-g-PEG-g-CT). CS-g-PEG-g-CT shows good adsorption ability by applying quantitative analysis of quartz crystal microbalance (QCM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and confocal fluorescence imaging technique, as well as the typical shear-thinning feature. CS-g-PEG-g-CT exhibits low and stable coefficients of friction (COFs) (0.01-0.02) on polydimethylsiloxane (PDMS) surfaces at a wide range of mass concentrations in diverse media including pure water, physiological saline, and PBS buffer solution and is even tolerant to various normal loads and sliding frequencies for complex pressurizing or shearing environments. Subsequently, systematic surface characterizations are used to verify the dynamic attachment ability of the CS-g-PEG-g-CT lubricant on the loading/shearing process. The lubrication mechanism of CS-g-PEG-g-CT can be attributed to the synergy of strong adsorption from catechol groups to form a uniform assembly layer, excellent hydration effect from PEG chains, and typical shear-thinning feature to dissipate viscous resistance. Surprisingly, CS-g-PEG-g-CT exhibits efficient lubricity on silicone-based commercial contact lenses and catheters. The current macromolecule lubricant demonstrates great real application potential in the fields of medical devices and disease treatments.


Asunto(s)
Polietilenglicoles , Silicio , Catecoles , Lubricantes/química , Lubrificación , Polietilenglicoles/química , Polisacáridos
2.
Angew Chem Int Ed Engl ; 61(26): e202204410, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35412006

RESUMEN

In this study, a novel surface initiated polymerization (SIP) method was developed from organic-inorganic hybrid persistent initiator coating (PIC) that embeds initiator molecules into inorganic silica sol-gel layer. Comparing with traditional silane initiator surface that prepared by chemical vapor deposition (CVD) method, the PIC can effectively improve the mechanical stability of initiator that was able to endure ten-thousand times of friction cycles. Besides, it allows polymer grafting from sub-surface and so the grafted brushes, poly 3-sulfopropyl methacrylate potassium salt (pSPMA) on the PIC were also much more wear-resisting than those prepared by the traditional ways. More importantly, the PIC could still trigger new polymerization reaction when the grafted brushes were worn off. In addition, the PIC is universal and can be covered on different substrates including glass, metals and plastics, etc. to realize functionalization of these materials. The approach may pave technological way for the application of surface grafted polymer brushes.

3.
Angew Chem Int Ed Engl ; 61(39): e202209741, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35934675

RESUMEN

Growing lubricating hydrogel coatings in controllable manners on diverse material surfaces demonstrates promising applications. Here, a surface modification method is reported for in situ growing hydrogel coatings onto surfaces of diverse substrates in the absence of UV assistance. It is performed by decorating substrates with a universal mussel-inspired synthetic adhesive with catechol groups. Upon being immersed in reaction solution, these groups can assist substrate bonding and in situ capture and reduce Fe3+ into Fe2+ for decomposing S2 O8 2- into SO4 - ⋅ catalytically at the interface to initiate interface polymerization of monomers. As a result, hydrogel coatings with controllable thickness could be grown on surfaces of arbitrary substrates to change their surface characteristics regardless of materials size, category, geometry and transparency, implying considerable potential in surface engineering.

4.
Int J Biol Macromol ; 254(Pt 3): 127924, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944727

RESUMEN

Improving hydrophobicity through the regulation of surface microstructures has attracted significant interest in various applications. This research successfully prepared a surface with microsphere structures using the Non-solvent induced phase separation method (NIPS). Poly(D-Lactic acid)-block-poly(ethylene glycol)-block-poly(D-Lactic acid) (PDLA-PEG-PDLA) block polymers were synthesized by ring-opening polymerization of D-Lactic acid (D-LA) using polyethylene glycol (PEG) as initiator. PLLA/PDLA-PEG-PDLA membrane with microscale microsphere morphology was fabricated using a nonsolvent-induced self-assembly method by blending the triblock copolymer with a poly(L-lactic acid) (PLLA) solution. In phase separation processes, the amphiphilic block copolymers self-assemble into micellar structures to minimize the Gibbs free energy, and the hydrophilic segments (PEG) aggregate to form the core of the micelles, while the hydrophobic segments (PDLA) are exposed on the outer corona resulting in a core-shell structure. The Stereocomplex Crystalline (SC), formed by the hydrogen bonding between PLLA and PDLA, can facilitate the transition from liquid-liquid phase separation to solid-liquid phase separation, and the PEG chain segments can enhance the formation of SC. The membrane, prepared by adjusting the copolymer content and PEG chain length, exhibited adjustable microsphere quantity, diameter, and surface roughness, enabling excellent hydrophobicity and controlled release of oil-soluble substances.


Asunto(s)
Ácido Láctico , Polietilenglicoles , Polietilenglicoles/química , Ácido Láctico/química , Cristalización , Solventes , Microesferas , Polímeros/química , Poliésteres/química , Micelas
5.
Carbohydr Polym ; 304: 120503, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36641169

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory immune and lubrication dysfunction disease that causes great damage to the joints. Herein, inspired by the unique biochemistry structure and excellent hydration of chondroitin sulfate (CHI) existing in joint system, one kind of novel polysaccharide nanoparticle lubricant, that is chitosan nanoparticles (CS NPs) grafting CHI (CS-CHI), is synthesized by one-step surface chemistry reaction. CHI with negative charges can form hydration layers on the surface of CS NPs, thus improving the lubricity of nanoparticles. Simultaneously, CS-CHI NPs have effective loading and sustained drug release ability for anti-inflammatory drug diclofenac sodium (DS), along with good biocompatibility. Finally, based on a collagen-induced rat RA model, in vitro animals experimental results indicate that the as-synthesized CS-CHI@DS NPs has obvious inhibitory effects on inflammatory factors and can effectively prevent the damaged cartilage from further destruction.


Asunto(s)
Quitosano , Nanopartículas , Ratas , Animales , Quitosano/química , Agua/química , Lubricantes , Biomimética , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Diclofenaco/farmacología , Diclofenaco/uso terapéutico , Nanopartículas/química , Portadores de Fármacos/química
6.
Int J Biol Macromol ; 229: 814-824, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36610563

RESUMEN

The typical symptoms of arthritis are inflammation and lubrication deficiency in joints, which increase wear of articular cartilage along with pain of patients. In the present study, one kind of novel macromolecular/microsphere-based injectable hydrogels (CMC-ODex NPs) with dual functionalities of drug release and lubrication, was fabricated via dynamic Schiff base crosslinking network between carboxymethyl chitosan (CMC) and oxidation dextran nanoparticles (ODex NPs). The CMC-ODex NPs hydrogels exhibited typical viscosity-thinning phenomenon at wide range of shear rates and obvious gel-sol transition feature at specific strain. As a result, CMC-ODex NPs hydrogels presented low friction coefficient at the sliding interface of bovine articular cartilages, resulting from the boundary lubrication of hydrogel and the rolling friction effect of ODex NPs. Furthermore, the anti-inflammatory drug (dexamethasone, DXM) encapsulated in ODex NPs exhibited sustainable drug release behavior during the dynamic shearing process, which making CMC-ODex NPs hydrogels possessed good and stable anti-inflammatory effect. CMC-ODex NPs hydrogels was prepared without utilizing any toxic agents, thus demonstrated excellent cytocompatibility. Our experimental results reveal the CMC-ODex NPs hydrogels is promising to be used as functional lubricant for inhibiting the development of arthritis.


Asunto(s)
Quitosano , Nanosferas , Animales , Humanos , Bovinos , Hidrogeles/farmacología , Lubrificación , Liberación de Fármacos
7.
Adv Mater ; 34(11): e2108889, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35014101

RESUMEN

Controllably coating the surfaces of substrates/medical devices with hydrogels exhibits great application potential, but lacks universal techniques. Herein, a new method, namely ultraviolet-triggered surface catalytically initiated radical polymerization (UV-SCIRP) from a sticky initiation layer (SIL) (SIL@UV-SCIRP), is proposed for growing hydrogel coatings. The method involves three key steps: 1) depositing a sticky polydopamine/Fe3+ coating on the surface of the substrates-SIL, 2) reducing Fe3+ ions to Fe2+ ions as active catalysts by UV illumination with the assistance of citric acid, and 3) conducting SCIRP in a monomer solution at room temperature for growing hydrogel coatings. In this manner, practically any substrate's surface (natural or artificial materials) can be modified by hydrogel coatings with controllable thickness and diverse compositions. The hydrogel coatings exhibit good interface bonding with the substrates and enable easy changes in their wettability and lubrication performances. Importantly, this novel method facilitates the smooth growth of uniform hydrogel lubrication coatings on the surface of a range of medical devices with complex geometries. Finally, as a proof-of-concept, the slippery balls coated with hydrogel exhibited smooth movement within the catheter and esophagus. Hence, this method can prove to be a pioneering universal modification tool, especially in surface/interface science and engineering.

8.
ACS Appl Mater Interfaces ; 14(7): 9899-9908, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35138095

RESUMEN

Natural articular cartilages show extraordinary tribological performance based on their penetrated surface lubricated biomacromolecules and good mechanical tolerance. Hydrogels are considered to be potential alternatives to cartilages due to their low surface friction and good biocompatibility, although the poor mechanical properties limited their applications. Inspired by the excellent mechanical properties and the remarkable surface lubrication mechanism of natural articular cartilages, one kind of cartilage-like composite material with a lubrication phase (Composite-LP) was developed by chemically grafting a thick hydrophilic polyelectrolyte brush layer onto the subsurface of a three-dimensional manufactured elastomer scaffold-hydrogel composite architecture. The Composite-LP exhibited good load-bearing capacities because of the nondissipation strategy and the stress dispersion mechanism resulting from the elastomer scaffold enhancement. In the presence of the top lubrication layer, the Composite-LP showed superior friction reduction functionality and wear resistance under a dynamic shearing process. This design concept of coupling the non-dissipative mechanism and interface lubrication provides a new avenue for developing cartilage-like hydrogels and soft robots.

9.
ACS Appl Mater Interfaces ; 14(10): 12684-12692, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35230813

RESUMEN

Despite the fact that synthetic adhesives have achieved great progress, achieving robust dry/wet adhesion under harsh operating environments is still challenging. Herein, inspired from the extraordinary adhesion mechanism of nature mussel protein adhesive, the balanced design concept of co-adhesion and interfacial adhesion is proposed to prepare one kind of novel copolymer adhesive of [poly(dopamine methacrylamide-co-methoxethyl acrylate-co-adamantane-1-carboxylic acid 2-(2-methyl-acryloyloxy)-ethyl ester)] [p(DMA-co-MEA-co-AD)], named as super-robust adhesive (SRAD). The SRAD exhibits ultra-high interface bonding strengths in air (∼7.66 MPa) and underwater (∼2.78 MPa) against an iron substrate. Especially, a greatly tough and stable adhesion strength (∼2.11 MPa) can be achieved after immersing the bonded sample in water for half a year. Furthermore, the SRAD demonstrates surprising wet bonding robustness/tolerance even encountering harsh conditions such as fluid shearing, dynamic loading, and cyclic mechanical fretting. The great advantages of SRAD, such as strong interface bonding, stable wet adhesion underwater, and good mechanical tolerance, makes it demonstrate huge application potential in engineering sealants and underwater adhesion.

10.
ACS Appl Mater Interfaces ; 14(16): 18901-18909, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35412795

RESUMEN

Multiple functional coating is urgently needed in complex service surroundings to meet various requirements. In this work, a brush-like amphiphilic copolymer of poly methacryloxyethyl dimethyl butyl ammonium bromide-polydimethylsiloxane (pMDBAB-PDMS) was synthesized to construct an environment-adaptive multifunctional coating based on the copolymer via the UV-curing method. The special molecule chains of the copolymer assembled predominately on the coating surface in different surroundings, which rendered the surface with various functions. In water-rich surroundings, the hydrophilic quaternary ammonium groups in the coating endow the coating surface with antifogging, oleophobicity underwater, self-cleaning, antibacteria, triboelectric resistance, and super lubrication properties. In dry air surroundings, the long, flexible, low surface energy molecular PDMS chains tend to distribute on the top of the coating surface, which gives a low friction coefficient and antioil properties. This work presents a strategy to construct environmental adaptive coating that has an important application prospect in the field of optical lens.

11.
ACS Appl Mater Interfaces ; 14(40): 45934-45944, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36166403

RESUMEN

Lubricants performing better in machinery systems would lead to the remarkable reduction of environmental pollution problems and the significant improvement of fuel economy. A new family of supramolecular polymer gel lubricants with urea groups has been successfully prepared via self-assembling noncovalent bonds. These newly designed supramolecular polymer gels were well characterized with field-emission scanning electron microscopy, proton nuclear magnetic resonance, attenuated total reflection-Fourier transform infrared spectroscopy, a rheometer, oscillating reciprocating friction, and a wear tester. Compared to low molecular weight supramolecular gels, the covalent and noncovalent bonds cooperated in the supramolecular polymer gel based on macromolecules. Hence, the mechanical properties and viscoelasticity of gel lubricants are greater than those of the low molecular weight supramolecular gels. Furthermore, owing to the longer chain length of polymer gelators, the thickness of the adsorbed film formed on the surface lubricated by macromolecules is thicker than that on the surface lubricated by low molecular weight supramolecular gels, which positively correlates with the lubricating property, making supramolecular polymer gels based on macromolecules better than low molecular weight supramolecular gels. Excitingly, the supramolecular polymer gels based on macromolecules exhibit more excellent thermal reversibility, creep recovery, and thixotropic properties, which not only achieve the lubricating property but also lead to the remarkable reduction of environmental pollution problems due to oil creeping.

12.
ACS Appl Mater Interfaces ; 13(12): 14562-14568, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33662200

RESUMEN

Inspired by natural living surfaces, researchers have developed many excellent anti-smudge coatings, but there remain some critical challenges such as complex or expensive fabrications, poor long-term stability, non-transparency, etc., which may limit their large-area application. In this work, we designed a robust and transparent omniphobic coating with a one-step dip coating method. The perfluoropolyether chains were grafted on a smooth glass surface, and the coating surface not only presented good liquid repellency and stain resistance but also owned excellent mechanical wear resistance. The stain resistance property and wettability have barely changed after hundreds of thousands of friction cycles in air or even in an organic solvent surrounding. The robust hybrid coating possesses simple preparation, an excellent property, and durability, which may bring a widespread interest in the engineering application field.

13.
ACS Appl Mater Interfaces ; 12(35): 39910-39919, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32804469

RESUMEN

As pure lubricants, ILs performed very well by forming the classical self-assembly bilayer at the sliding interface. The interface mechanism is still not clear in a very polar, e.g., water-based lubricating system. In this work, the interfacial absorption and tribological behavior of carboxylic alkanolamine ionic liquids (CAILs) serving as aqueous lubricating additives were studied by applying positive and negative potentials on the friction pair, accompanied by the comprehensive discussion of data from critical micelle concentration, quartz crystal microbalance, ECR, and MD results. The results reveal that the adsorption behavior, unexpectedly, was affected by the high polarity of H2O, where a less dense double-layer structure is observed at the interface by model imitation. Conversely, the monomolecular adsorption layer constructed electrostatically between the polar head (-COO-) and the positive base dominates the tribofilm. Meanwhile, the cations are partially accumulating around anions in the presence of static electricity, which does not form a neat and dense one-to-one corresponding cation-anion pair. In the solution, the IL maintains a state of dissociation and minor agglomeration. Furthermore, an increase in alkyl chains contributes to the thickness of the protective film generated by CAILs on the sliding asperity. Eventually, the synergistic effect from physical adsorption and the tribochemical reaction is responsible for excellent lubricity and antiwear performance of CAILs.

14.
ACS Appl Mater Interfaces ; 12(45): 51114-51121, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33140650

RESUMEN

The natural cartilage layer exhibits excellent interface low friction and good load-bearing properties based on the mechanically controlled adaptive lubrication mechanism. Understanding and imitating such a mechanism is important for developing high-load-bearing water-lubrication materials. Here, we report the successful preparation of thermoresponsive layered materials by grafting a poly(3-sulfopropyl methacrylate potassium salt) (PSPMA) polyelectrolyte brush onto the subsurface of an initiator-embedded high strength hydrogel [poly(N-isopropylacrylamide-co-acrylic acid-co-initiator/Fe3+)] [P(NIPAAm-AA-iBr/Fe3+)]. The top soft hydrogel/brush composite layer provides aqueous lubrication, while the bottom thermoresponsive hydrogel layer exhibits adaptive load-bearing capacity that shows tunable stiff or modulus in response to the temperature above and below the lower critical solution temperature (LCST, 32.5 °C). An obvious friction-reduction feature is realized above the LCST, resulting from the dynamic increase of the bottom layer mechanical modulus. Furthermore, in situ lubrication-improvement behavior is achieved upon applying a near-infrared (NIR) laser onto the surface of Fe3O4 nanoparticle (NP)-integrated layered materials. Such a typical lubrication-regulated behavior can be attributed to the synergy effect of the improved load-bearing capacity of the bottom layer and the enhanced lubrication behavior of the top layer with an increase in the polyelectrolyte brush chain density, which is similar to the mechanically controlled adaptive lubrication mechanism of the natural cartilage layer. Current research results provide an inspiration for developing novel biomimetic lubrication materials with considerable load-bearing capacity and also propose a strategy for designing intelligent/stable friction-actuation devices.


Asunto(s)
Materiales Biomiméticos/química , Cartílago Articular/química , Hidrogeles/química , Adaptación Biológica , Materiales Biomiméticos/síntesis química , Lubrificación , Tamaño de la Partícula , Estrés Mecánico , Propiedades de Superficie , Temperatura
15.
J Colloid Interface Sci ; 575: 388-398, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32388285

RESUMEN

HYPOTHESIS: Developing separation membranes functionalized by polymer brushes with high separation efficiency and good cycling stability is of great importance for oil/water separation, yet is still challenged. EXPERIMENTS: In this work, the covalently embedded polyzwitterionic brush-functionalized nanofibrous membrane was developed for efficient and durable oil/water separation. The nanofibrous membrane was prepared by the electrospinning method using initiator-embedded polyacrylonitrile (PAN) resin, followed by novel subsurface-initiated atom transfer radical polymerization (SSI-ATRP) to graft embedded poly(sulfobetaine methacrylate) brushes (PSBMA). The hydration ability, underwater oil adhesion, oil/water separation performance as well as self-cleaning properties of the as prepared membrane (PAN-sg-PSBMA) were systematically studied. FINDINGS: The PAN-sg-PSBMA membrane exhibited extraordinary hydration ability and underwater superoleophobicity with extremely low oil adhesion, which outperformed conventional polymer brush-modified membrane (PAN-g-PSBMA). The PAN-sg-PSBMA membrane was able to separate both oil/water mixture and surfactant-stabilized emulsions with ultrahigh permeation flux and separation efficiency. Moreover, compared with PAN-g-PSBMA, PAN-sg-PSBMA membrane exhibited unprecedented recycling stability in both permeation flux and separation efficiency, which is attributed to mechanical robustness of embedded polymer brushes and outstanding antifouling ability. The current findings revealed that embedded polymer brushes from SSI-ATRP could offer a promising design of functionalized nanofibrous membrane for highly efficient and durable oil/water separation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA