Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 87(6): 3467-75, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25714913

RESUMEN

Optically diffracting films based on hydrogel-encapsulated crystalline colloidal arrays have considerable utility as sensors for detecting enzymaticphosphorylation and, thus, in screening small molecule modulators of kinases. In this work, we have investigated the impact of hydrogel properties, as well as the role of the ionic character of the surrounding environment, on the optical sensitivity of kinase responsive crystalline colloidal array-containing hydrogels. In agreement with a model of hydrogel swelling, the optical sensitivity of such materials increased as the shear modulus and the Flory-Huggins interaction parameter between polymer and solvent decreased. Additionally, elimination of extraneous charges in the polymer backbone by exploiting azide-alkyne click chemistry to functionalize the hydrogels with a peptide substrate for protein kinase A further enhanced the sensitivity of the optically diffracting films. Increasing peptide concentration and, in turn, immobilized charge within the hydrogel network was shown to increase the optical response over a range of ionic strength conditions. Ultimately, we showed that, by tuning the hydrogel and solution properties, as little as 0.1 U/µL protein kinase A could be detected in short reaction times (i.e., 2 h), which is comparable to conventional biochemical kinase assays. We further showed that this approach can be used to detect protein kinase A activity in lysate from HEK293 cells. The sensitivity of the resulting films, coupled with the advantages of photonic crystal based sensors (e.g., label free detection), makes this approach highly attractive for screening enzymatic phosphorylation.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Pruebas de Enzimas/métodos , Hidrogeles/química , Fenómenos Ópticos , Química Clic , Colforsina/farmacología , Activación Enzimática/efectos de los fármacos , Células HEK293 , Humanos , Concentración Osmolar , Fosforilación/efectos de los fármacos , Soluciones
2.
Analyst ; 140(18): 6354-62, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26270146

RESUMEN

We have developed a novel approach for DNA detection as well as genetic screening of mutations by uniquely combining DNA-responsive and optically diffracting materials. This approach entails the polymerization of a photonic crystal within a hydrogel network that alters the diffraction of light in response to a target DNA strand. The utility of this approach, which permits label-free sensing, was demonstrated via the detection of a target sequence from the DNA binding domain of the major tumor suppressor protein p53. Using a complementary capture probe strand, we were able to detect down to picomole concentrations of the target p53 sequence. Moreover, we demonstrated that this approach could readily detect a single base pair mutation in the target strand, which corresponds to the hotspot cancer mutation R175H in p53. The sensitivity of detection was increased by lowering the rate of annealing of the target strand and adjusting the solution ionic strength during optical characterization. Changes in ionic strength during characterization impact the melting temperature of the bound target DNA and the Donnan potential between the hydrogel and solution, which influence detection. We further showed that this approach is sensitive to epigenetic changes via the detection of a fully methylated form of the target p53 sequence. Ultimately, this approach represents a new paradigm for DNA detection and specifically genetic screening of p53 as well as other disease markers and nucleotide modifications that alter the properties of DNA (e.g., epigenetic alterations and adducts with chemical carcinogens).


Asunto(s)
Técnicas Biosensibles/métodos , Metilación de ADN , Genes p53/genética , Hidrogeles , Mutación Missense , Fenómenos Ópticos , Secuencia de Bases , ADN/química , ADN/genética , Sondas de ADN/química , Sondas de ADN/genética , Hibridación de Ácido Nucleico , Concentración Osmolar , Temperatura de Transición
3.
J Am Chem Soc ; 136(19): 6896-9, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24761969

RESUMEN

We have developed a novel biosensor for kinases that is based on a kinase-responsive polymer hydrogel, which enables label-free screening of kinase activity via changes in optical properties. The hydrogel is specifically designed to swell reversibly upon phosphorylation of a target peptide, triggering a change in optical diffraction from a crystalline colloidal array of particles impregnated into the hydrogel. Diffraction measurements, and charge staining, confirmed the responsive nature of the hydrogel. Moreover, the change in diffraction of the hydrogel upon treatment with kinase exhibited a time- and dose-dependent response. A theoretical model for ionic polymer networks describes the observed optical response well and can be used to quantify the extent of phosphorylation.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hidrogeles/metabolismo , Péptidos/metabolismo , Coloides/química , Coloides/metabolismo , Cristalización , Hidrogeles/química , Isoquinolinas/farmacología , Luz , Fosforilación , Fotones , Inhibidores de Proteínas Quinasas/farmacología , Sulfonamidas/farmacología
4.
ACS Appl Bio Mater ; 5(3): 1252-1258, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35166523

RESUMEN

We herein describe a highly versatile platform approach for the in situ and real-time screening of microbial biocatalysts for enhanced production of bioproducts using photonic crystal hydrogels. This approach was demonstrated by preparing optically diffracting films based on polymerized N-isopropylacrylamide that contracted in the presence of alcohols and organic acids. The hydrogel films were prepared in a microwell plate format, which allows for high-throughput screening, and characterized optically using a microwell plate reader. While demonstrating the ability to detect a broad range of relevant alcohols and organic acids, we showed that the response of the films correlated strongly with the octanol-water partition coefficient (log P) of the analyte. Differences in the secretion of ethanol and succinic acid from strains of Zymomonas mobilis and Actinobacillus succinogenes, respectively, were further detected via optical characterization of the films. These differences, which in some cases were as low as ∼3 g/L, were confirmed by high-performance liquid chromatography, thereby demonstrating the sensitivity of this approach. Our findings highlight the potential utility of this multiplexed approach for the detection of small organic analytes in complex biological media, which overcomes a major challenge in conventional optical sensing methods.


Asunto(s)
Hidrogeles , Compuestos Orgánicos , Ácidos , Alcoholes , Medios de Cultivo/química , Octanoles
5.
ACS Appl Mater Interfaces ; 9(33): 27927-27935, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28758737

RESUMEN

Photonic crystal hydrogels composed of analyte-responsive hydrogels and crystalline colloidal arrays have immense potential as reagentless chemical and biological sensors. In this work, we investigated a general mechanism to rationally tune the sensitivity of photonic crystal hydrogels consisting of stimuli-responsive polymers to small molecule analytes. This mechanism was based on modulating the demixing temperature of such hydrogels relative to the characterization temperature to in effect maximize the extent of phase separation behavior; thus, the volume changes in response to the target analytes. Using ethanol as a model analyte, we demonstrated that this mechanism led to a dramatic increase in the sensitivity of optically diffracting poly(N-isopropylacrylamide) (pNIPAM) hydrogel films that exhibit a lower critical solution temperature (LCST) behavior. The demixing temperature of the pNIPAM films was modulated by copolymerization of the films with relatively hydrophobic and hydrophilic comonomers, as well as by varying the ionic strength of the characterization solution. Our results showed that copolymerization of the films with 2.5 mol % of N-tert-butylacrylamide, which is hydrophobic relative to pNIPAM, enabled the detection limit of the pNIPAM films to ethanol to be lowered ∼2-fold at 30 °C. Additionally, increasing the ionic strength of the characterization solution above 200 mM resulted in a dramatic increase in the extent of contraction of the films in the presence of ethanol. Ultimately, it was demonstrated that as little as 16 g/L or 2 vol % of ethanol in water could reliably be detected, and that the sensitivity of the films to ethanol was predictably greatest when operating near the phase transition, such that even small additions of the analyte induced the start of demixing and the collapse of the hydrogel. Such a mechanism may be extended to photonic crystal hydrogel sensors prepared from other stimuli-responsive polymers and more broadly exploited to enhance the utility of these sensors for a broad range of analytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA