Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Rapid Commun Mass Spectrom ; 32(9): 695-702, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29486520

RESUMEN

RATIONALE: Oil sands mining in Alberta, Canada, requires removal and stockpiling of considerable volumes of near-surface overburden material. This overburden includes lean oil sands (LOS) which cannot be processed economically but contain sparingly soluble petroleum hydrocarbons and naphthenic acids, which can leach into environmental waters. In order to measure and track the leaching of dissolved constituents and distinguish industrially derived organics from naturally occurring organics in local waters, practical methods were developed for characterizing multiple sources of contaminated water leakage. METHODS: Capillary electrophoresis/positive-ion electrospray ionization low-resolution time-of-flight mass spectrometry (CE/LRMS), high-resolution negative-ion electrospray ionization Orbitrap mass spectrometry (HRMS) and conventional gas chromatography/flame ionization detection (GC/FID) were used to characterize porewater samples collected from within Athabasca LOS and mixed surficial materials. GC/FID was used to measure total petroleum hydrocarbon and HRMS was used to measure total naphthenic acid fraction components (NAFCs). HRMS and CE/LRMS were used to characterize samples according to source. RESULTS: The amounts of total petroleum hydrocarbon in each sample as measured by GC/FID ranged from 0.1 to 15.1 mg/L while the amounts of NAFCs as measured by HRMS ranged from 5.3 to 82.3 mg/L. Factors analysis (FA) on HRMS data visually demonstrated clustering according to sample source and was correlated to molecular formula. LRMS coupled to capillary electrophoresis separation (CE/LRMS) provides important information on NAFC isomers by adding analyte migration time data to m/z and peak intensity. CONCLUSIONS: Differences in measured amounts of total petroleum hydrocarbons by GC/FID and NAFCs by HRMS indicate that the two methods provide complementary information about the nature of dissolved organic species in a soil or water leachate samples. NAFC molecule class Ox Sy is a possible tracer for LOS seepage. CE/LRMS provides complementary information and is a feasible and practical option for source evaluation of NAFCs in water.

2.
Electrophoresis ; 38(12): 1572-1581, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28247914

RESUMEN

Capillary electrophoresis frontal analysis (CE-FA) can be used to determine binding affinity of molecular interactions. However, its current data processing method mandate specific requirement on the mobilities of the binding pair in order to obtain accurate binding constants. This work shows that significant errors are resulted when the mobilities of the interacting species do not meet these requirements. Therefore, the applicability of CE-FA in many real word applications becomes questionable. An electrophoretic mobility-based correction method is developed in this work based on the flux of each species. A simulation program and a pair of model compounds are used to verify the new equations and evaluate the effectiveness of this method. Ibuprofen and hydroxypropyl-ß-cyclodextrinare used to demonstrate the differences in the obtained binding constant by CE-FA when different calculation methods are used, and the results are compared with those obtained by affinity capillary electrophoresis (ACE). The results suggest that CE-FA, with the mobility-based correction method, can be a generally applicable method for a much wider range of applications.


Asunto(s)
Simulación por Computador , Electroforesis Capilar/métodos , beta-Ciclodextrinas/análisis , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Ibuprofeno/análisis , Unión Proteica
3.
Rapid Commun Mass Spectrom ; 31(24): 2057-2065, 2017 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28944977

RESUMEN

RATIONALE: The characterization of naphthenic acid fraction compounds (NAFCs) in oil sands process affected water (OSPW) is of interest for both toxicology studies and regulatory reasons. Previous studies utilizing authentic standards have identified dicarboxylic naphthenic acids using two-dimensional gas chromatography hyphenated to time-of-flight mass spectrometry (GC × GC/TOFMS). The selective derivatization of hydroxyl groups has also recently aided in the characterization of oxy-NAFCs, and indirectly the characterization of dicarboxylic NAFCs. However, there has been no previous report of derivatization being used to directly aid in the standard-free characterization of NAFCs with multiple carboxylic acid functional groups. Herein we present proof-of-concept for the characterization of dicarboxylic NAFCs utilizing amide derivatization. METHODS: Carboxylic acid groups in OSPW extract and in a dicarboxylic acidstandard were derivatized to amides using a previously described method. The derivatized extract and derivatized standard were analyzed by direct-injection positive-mode electrospray ionization ((+)ESI) high-resolution mass spectrometry (HRMS), and the underivatized extract was analyzed by (-)ESI MS. Tandem mass spectrometry (MS/MS) was carried out on selected ions of the derivatized standard and derivatized OSPW. Data analysis was carried out using the Python programming language. RESULTS: The distribution of monocarboxylic NAFCs observed in the amide-derivatized OSPW sample by (+)ESI-MS was generally similar to that seen in underivatized OSPW by (-)ESI-MS. The dicarboxylic acid standard shows evidence of being doubly derivatized, although the second derivatization appears to be inefficient. Furthermore, a spectrum of potential diacid NAFCs is presented, identified by both charge state and derivatization mass. Interference due to the presence of multiple derivatization products is noted, but can be eliminated using on-line separation or an isotopically labelled derivatization reagent. CONCLUSIONS: Proof of concept for the characterization of dicarboxylic NAFCs utilizing amide derivatization is demonstrated. Furthermore, (+)ESI-HRMS of the derivatized monocarboxylic NAFCS yields similar information to (-)ESI-MS analysis of underivatized NAFCs, with the benefit of added selectivity for carboxylic acid species and the characterization of diacids.

4.
J Environ Sci (China) ; 49: 203-212, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28007176

RESUMEN

Capillary electrophoresis coupled to mass spectrometry (CE-MS) was used for the analysis of naphthenic acid fraction compounds (NAFCs) of oil sands process-affected water (OSPW). A standard mixture of amine-derivatized naphthenic acids is injected directly onto the CE column and analyzed by CE-MS in less than 15min. Time of flight MS analysis (TOFMS), optimized for high molecular weight ions, showed NAFCs between 250 and 800m/z. With a quadrupole mass analyzer, only low-molecular weight NAFCs (between 100 and 450m/z) are visible under our experimental conditions. Derivatization of NAFCs consisted of two-step amidation reactions mediated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), or mediated by a mixture of EDC and N-hydroxysuccinimide, in dimethyl sulfoxide, dichloromethane or ethyl acetate. The optimum background electrolyte composition was determined to be 30% (V/V) methanol in water and 2% (V/V) formic acid. NAFCs extracted from OSPW in the Athabasca oil sands region were used to demonstrate the feasibility of CE-MS for the analysis of NAFCs in environmental samples, showing that the labeled naphthenic acids are in the mass range of 350 to 1500m/z.


Asunto(s)
Ácidos Carboxílicos/análisis , Electroforesis Capilar , Monitoreo del Ambiente/métodos , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua/análisis , Ácidos Carboxílicos/química , Contaminantes Químicos del Agua/química
5.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1074-1075: 79-85, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29334632

RESUMEN

Targeted and untargeted analyses of the sub-5 kDa urine metabolome of genitourinary cancer patients (prostate and/or bladder) were performed without chemical derivatization using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS). For targeted analysis, endogenous levels of sarcosine and 5 other amino acid metabolites implicated in the progression of prostate cancer were quantified in four patients and in a pooled urine sample from healthy volunteers. An untargeted analysis (m/z 50 to 850) of patient urine was performed using the same CE-ESI-MS system identifying over 400 distinct molecular features per patient. All patient urine samples were collected at prostatectomy/cystectomy via catheter. Patient urine samples were filtered by centrifugation, with endogenous sarcosine enriched by solid-phase extraction, and the processed samples loaded onto CE-ESI-MS for analysis. Diagnostic information, digital pathological slides, and tissue samples were collected and stored in a comprehensive biobanking database. The introduction of urine sample collection into the surgery workflow was facile and is a promising strategy for addressing the translational research challenge of moving smoothly from "chromatogram to nomogram".


Asunto(s)
Biomarcadores de Tumor , Electroforesis Capilar/métodos , Metaboloma , Neoplasias de la Próstata , Neoplasias de la Vejiga Urinaria , Adulto , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/orina , Estudios de Factibilidad , Humanos , Masculino , Metabolómica/métodos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/orina , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/orina , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA