Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Nature ; 628(8006): 104-109, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350601

RESUMEN

The development of bimolecular homolytic substitution (SH2) catalysis has expanded cross-coupling chemistries by enabling the selective combination of any primary radical with any secondary or tertiary radical through a radical sorting mechanism1-8. Biomimetic9,10 SH2 catalysis can be used to merge common feedstock chemicals-such as alcohols, acids and halides-in various permutations for the construction of a single C(sp3)-C(sp3) bond. The ability to sort these two distinct radicals across commercially available alkenes in a three-component manner would enable the simultaneous construction of two C(sp3)-C(sp3) bonds, greatly accelerating access to complex molecules and drug-like chemical space11. However, the simultaneous in situ formation of electrophilic and primary nucleophilic radicals in the presence of unactivated alkenes is problematic, typically leading to statistical radical recombination, hydrogen atom transfer, disproportionation and other deleterious pathways12,13. Here we report the use of bimolecular homolytic substitution catalysis to sort an electrophilic radical and a nucleophilic radical across an unactivated alkene. This reaction involves the in situ formation of three distinct radical species, which are then differentiated by size and electronics, allowing for regioselective formation of the desired dialkylated products. This work accelerates access to pharmaceutically relevant C(sp3)-rich molecules and defines a distinct mechanistic approach for alkene dialkylation.


Asunto(s)
Alquenos , Catálisis , Hidrógeno , Ácidos/química , Alcoholes/química , Alquenos/química , Biomimética , Hidrógeno/química , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química
2.
Nature ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843825

RESUMEN

The ability to tame high-energy intermediates is critical for synthetic chemistry, enabling the construction of complex molecules and propelling advances in the field of synthesis. Along these lines, carbenes and carbenoid intermediates are particularly attractive, but often elusive, high-energy intermediates.1,2 Classical methods to access metal carbene intermediates exploit two-electron chemistry to form the critical carbon-metal bond. However, these methods are often prohibitive due to reagent safety concerns, limiting their broad implementation in synthesis.3-6 Mechanistically, an alternative approach to carbene intermediates that could circumvent these pitfalls would involve two single-electron steps: radical addition to a metal to forge the initial carbon-metal bond followed by redox-promoted α-elimination to yield the desired metal carbene intermediate. Herein, this strategy is realized through a metallaphotoredox platform that exploits iron carbene reactivity using readily available chemical feedstocks as radical sources and α-elimination from six classes of previously underexploited leaving groups. These discoveries permit cyclopropanation and σ-bond insertion into N-H, S-H, and P-H bonds from abundant and bench-stable carboxylic acids, amino acids, and alcohols, thereby providing a general solution to the challenge of carbene-mediated chemical diversification.

3.
Nature ; 628(8007): 326-332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480891

RESUMEN

Heteroarenes are ubiquitous motifs in bioactive molecules, conferring favourable physical properties when compared to their arene counterparts1-3. In particular, semisaturated heteroarenes possess attractive solubility properties and a higher fraction of sp3 carbons, which can improve binding affinity and specificity. However, these desirable structures remain rare owing to limitations in current synthetic methods4-6. Indeed, semisaturated heterocycles are laboriously prepared by means of non-modular fit-for-purpose syntheses, which decrease throughput, limit chemical diversity and preclude their inclusion in many hit-to-lead campaigns7-10. Herein, we describe a more intuitive and modular couple-close approach to build semisaturated ring systems from dual radical precursors. This platform merges metallaphotoredox C(sp2)-C(sp3) cross-coupling with intramolecular Minisci-type radical cyclization to fuse abundant heteroaryl halides with simple bifunctional feedstocks, which serve as the diradical synthons, to rapidly assemble a variety of spirocyclic, bridged and substituted saturated ring types that would be extremely difficult to make by conventional methods. The broad availability of the requisite feedstock materials allows sampling of regions of underexplored chemical space. Reagent-controlled radical generation leads to a highly regioselective and stereospecific annulation that can be used for the late-stage functionalization of pharmaceutical scaffolds, replacing lengthy de novo syntheses.


Asunto(s)
Carbono , Técnicas de Química Sintética , Compuestos Heterocíclicos con 1 Anillo , Preparaciones Farmacéuticas , Carbono/química , Ciclización , Compuestos Heterocíclicos con 1 Anillo/síntesis química , Compuestos Heterocíclicos con 1 Anillo/química , Solubilidad , Oxidación-Reducción , Fotoquímica , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Técnicas de Química Sintética/métodos
4.
Nature ; 616(7957): 574-580, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020029

RESUMEN

Interactions between biomolecules underlie all cellular processes and ultimately control cell fate. Perturbation of native interactions through mutation, changes in expression levels or external stimuli leads to altered cellular physiology and can result in either disease or therapeutic effects1,2. Mapping these interactions and determining how they respond to stimulus is the genesis of many drug development efforts, leading to new therapeutic targets and improvements in human health1. However, in the complex environment of the nucleus, it is challenging to determine protein-protein interactions owing to low abundance, transient or multivalent binding and a lack of technologies that are able to interrogate these interactions without disrupting the protein-binding surface under study3. Here, we describe a method for the traceless incorporation of iridium-photosensitizers into the nuclear micro-environment using engineered split inteins. These Ir-catalysts can activate diazirine warheads through Dexter energy transfer to form reactive carbenes within an approximately 10 nm radius, cross-linking with proteins in the immediate micro-environment (a process termed µMap) for analysis using quantitative chemoproteomics4. We show that this nanoscale proximity-labelling method can reveal the critical changes in interactomes in the presence of cancer-associated mutations, as well as treatment with small-molecule inhibitors. µMap improves our fundamental understanding of nuclear protein-protein interactions and, in doing so, is expected to have a significant effect on the field of epigenetic drug discovery in both academia and industry.


Asunto(s)
Núcleo Celular , Cromatina , Reactivos de Enlaces Cruzados , Humanos , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Reactivos de Enlaces Cruzados/análisis , Reactivos de Enlaces Cruzados/química , Transferencia de Energía , Epigenómica , Inteínas , Iridio , Mutación , Neoplasias/genética , Fármacos Fotosensibilizantes , Unión Proteica , Mapas de Interacción de Proteínas
5.
Nature ; 618(7965): 513-518, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37015289

RESUMEN

The replacement of benzene rings with sp3-hybridized bioisosteres in drug candidates generally improves pharmacokinetic properties while retaining biological activity1-5. Rigid, strained frameworks such as bicyclo[1.1.1]pentane and cubane are particularly well suited as the ring strain imparts high bond strength and thus metabolic stability on their C-H bonds. Cubane is the ideal bioisostere as it provides the closest geometric match to benzene6,7. At present, however, all cubanes in drug design, like almost all benzene bioisosteres, act solely as substitutes for mono- or para-substituted benzene rings1-7. This is owing to the difficulty of accessing 1,3- and 1,2-disubstituted cubane precursors. The adoption of cubane in drug design has been further hindered by the poor compatibility of cross-coupling reactions with the cubane scaffold, owing to a competing metal-catalysed valence isomerization8-11. Here we report expedient routes to 1,3- and 1,2-disubstituted cubane building blocks using a convenient cyclobutadiene precursor and a photolytic C-H carboxylation reaction, respectively. Moreover, we leverage the slow oxidative addition and rapid reductive elimination of copper to develop C-N, C-C(sp3), C-C(sp2) and C-CF3 cross-coupling protocols12,13. Our research enables facile elaboration of all cubane isomers into drug candidates, thus enabling ideal bioisosteric replacement of ortho-, meta- and para-substituted benzenes.

6.
Nature ; 598(7881): 451-456, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34464959

RESUMEN

Metal-catalysed cross-couplings are a mainstay of organic synthesis and are widely used for the formation of C-C bonds, particularly in the production of unsaturated scaffolds1. However, alkyl cross-couplings using native sp3-hybridized functional groups such as alcohols remain relatively underdeveloped2. In particular, a robust and general method for the direct deoxygenative coupling of alcohols would have major implications for the field of organic synthesis. A general method for the direct deoxygenative cross-coupling of free alcohols must overcome several challenges, most notably the in situ cleavage of strong C-O bonds3, but would allow access to the vast collection of commercially available, structurally diverse alcohols as coupling partners4. We report herein a metallaphotoredox-based cross-coupling platform in which free alcohols are activated in situ by N-heterocyclic carbene salts for carbon-carbon bond formation with aryl halide coupling partners. This method is mild, robust, selective and most importantly, capable of accommodating a wide range of primary, secondary and tertiary alcohols as well as pharmaceutically relevant aryl and heteroaryl bromides and chlorides. The power of the transformation has been demonstrated in a number of complex settings, including the late-stage functionalization of Taxol and a modular synthesis of Januvia, an antidiabetic medication. This technology represents a general strategy for the merger of in situ alcohol activation with transition metal catalysis.


Asunto(s)
Alcoholes/química , Bromuros/química , Carbono/química , Cloruros/química , Metales/química , Oxígeno/química , Fotoquímica , Catálisis , Metano/análogos & derivados , Metano/química , Nitrógeno/química , Oxidación-Reducción , Paclitaxel/química , Simvastatina/síntesis química , Simvastatina/química
7.
Nature ; 589(7843): 542-547, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33238289

RESUMEN

Positron emission tomography (PET) radioligands (radioactively labelled tracer compounds) are extremely useful for in vivo characterization of central nervous system drug candidates, neurodegenerative diseases and numerous oncology targets1. Both tritium and carbon-11 radioisotopologues are generally necessary for in vitro and in vivo characterization of radioligands2, yet there exist few radiolabelling protocols for the synthesis of either, inhibiting the development of PET radioligands. The synthesis of such radioligands also needs to be very rapid owing to the short half-life of carbon-11. Here we report a versatile and rapid metallaphotoredox-catalysed method for late-stage installation of both tritium and carbon-11 into the desired compounds via methylation of pharmaceutical precursors bearing aryl and alkyl bromides. Methyl groups are among the most prevalent structural elements found in bioactive molecules, and so this synthetic approach simplifies the discovery of radioligands. To demonstrate the breadth of applicability of this technique, we perform rapid synthesis of 20 tritiated and 10 carbon-11-labelled complex pharmaceuticals and PET radioligands, including a one-step radiosynthesis of the clinically used compounds [11C]UCB-J and [11C]PHNO. We further outline the direct utility of this protocol for preclinical PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clinical imaging. We also demonstrate this protocol for the installation of other diverse and pharmaceutically useful isotopes, including carbon-14, carbon-13 and deuterium.


Asunto(s)
Técnicas de Química Sintética , Ligandos , Procesos Fotoquímicos , Tomografía de Emisión de Positrones/métodos , Radioisótopos/química , Alquilación , Radioisótopos de Carbono/química , Glipizida/análogos & derivados , Glipizida/química , Metilación , Oxidación-Reducción
8.
Nature ; 580(7802): 220-226, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32066140

RESUMEN

Multicomponent reactions are relied on in both academic and industrial synthetic organic chemistry owing to their step- and atom-economy advantages over traditional synthetic sequences1. Recently, bicyclo[1.1.1]pentane (BCP) motifs have become valuable as pharmaceutical bioisosteres of benzene rings, and in particular 1,3-disubstituted BCP moieties have become widely adopted in medicinal chemistry as para-phenyl ring replacements2. These structures are often generated from [1.1.1]propellane via opening of the internal C-C bond through the addition of either radicals or metal-based nucleophiles3-13. The resulting propellane-addition adducts are then transformed to the requisite polysubstituted BCP compounds via a range of synthetic sequences that traditionally involve multiple chemical steps. Although this approach has been effective so far, a multicomponent reaction that enables single-step access to complex and diverse polysubstituted drug-like BCP products would be more time efficient compared to current stepwise approaches. Here we report a one-step three-component radical coupling of [1.1.1]propellane to afford diverse functionalized bicyclopentanes using various radical precursors and heteroatom nucleophiles via a metallaphotoredox catalysis protocol. This copper-mediated reaction operates on short timescales (five minutes to one hour) across multiple (more than ten) nucleophile classes and can accommodate a diverse array of radical precursors, including those that generate alkyl, α-acyl, trifluoromethyl and sulfonyl radicals. This method has been used to rapidly prepare BCP analogues of known pharmaceuticals, one of which is substantially more metabolically stable than its commercial progenitor.


Asunto(s)
Técnicas de Química Sintética , Cobre/química , Pentanos/química , Pentanos/síntesis química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/síntesis química , Productos Biológicos/síntesis química , Productos Biológicos/química , Productos Biológicos/metabolismo , Ciclización , Preparaciones Farmacéuticas/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(32): e2203027119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914173

RESUMEN

The elucidation of protein interaction networks is critical to understanding fundamental biology as well as developing new therapeutics. Proximity labeling platforms (PLPs) are state-of-the-art technologies that enable the discovery and delineation of biomolecular networks through the identification of protein-protein interactions. These platforms work via catalytic generation of reactive probes at a biological region of interest; these probes then diffuse through solution and covalently "tag" proximal biomolecules. The physical distance that the probes diffuse determines the effective labeling radius of the PLP and is a critical parameter that influences the scale and resolution of interactome mapping. As such, by expanding the degrees of labeling resolution offered by PLPs, it is possible to better capture the various size scales of interactomes. At present, however, there is little quantitative understanding of the labeling radii of different PLPs. Here, we report the development of a superresolution microscopy-based assay for the direct quantification of PLP labeling radii. Using this assay, we provide direct extracellular measurements of the labeling radii of state-of-the-art antibody-targeted PLPs, including the peroxidase-based phenoxy radical platform (269 ± 41 nm) and the high-resolution iridium-catalyzed µMap technology (54 ± 12 nm). Last, we apply these insights to the development of a molecular diffusion-based approach to tuning PLP resolution and introduce a new aryl-azide-based µMap platform with an intermediate labeling radius (80 ± 28 nm).


Asunto(s)
Microscopía , Mapas de Interacción de Proteínas , Azidas/química , Catálisis
10.
Proc Natl Acad Sci U S A ; 119(34): e2208077119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969791

RESUMEN

Over half of new therapeutic approaches fail in clinical trials due to a lack of target validation. As such, the development of new methods to improve and accelerate the identification of cellular targets, broadly known as target ID, remains a fundamental goal in drug discovery. While advances in sequencing and mass spectrometry technologies have revolutionized drug target ID in recent decades, the corresponding chemical-based approaches have not changed in over 50 y. Consigned to outdated stoichiometric activation modes, modern target ID campaigns are regularly confounded by poor signal-to-noise resulting from limited receptor occupancy and low crosslinking yields, especially when targeting low abundance membrane proteins or multiple protein target engagement. Here, we describe a broadly general platform for photocatalytic small molecule target ID, which is founded upon the catalytic amplification of target-tag crosslinking through the continuous generation of high-energy carbene intermediates via visible light-mediated Dexter energy transfer. By decoupling the reactive warhead tag from the small molecule ligand, catalytic signal amplification results in unprecedented levels of target enrichment, enabling the quantitative target and off target ID of several drugs including (+)-JQ1, paclitaxel (Taxol), dasatinib (Sprycel), as well as two G-protein-coupled receptors-ADORA2A and GPR40.


Asunto(s)
Sistemas de Liberación de Medicamentos , Transferencia de Energía , Proteómica , Descubrimiento de Drogas , Espectrometría de Masas
11.
J Am Chem Soc ; 146(8): 5067-5073, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38365186

RESUMEN

The replacement of a functional group with its corresponding bioisostere is a widely employed tactic during drug discovery campaigns that allows medicinal chemists to improve the ADME properties of candidates while maintaining potency. However, the incorporation of bioisosteres typically requires lengthy de novo resynthesis of potential candidates, which represents a bottleneck in their broader evaluation. An alternative would be to directly convert a functional group into its corresponding bioisostere at a late stage. Herein, we report the realization of this approach through the conversion of aliphatic alcohols into the corresponding difluoromethylated analogues via the merger of benzoxazolium-mediated deoxygenation and copper-mediated C(sp3)-CF2H bond formation. The utility of this method is showcased in a variety of complex alcohols and drug compounds.


Asunto(s)
Descubrimiento de Drogas , Alcoholes/química
12.
J Am Chem Soc ; 146(23): 15693-15700, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38820134

RESUMEN

The cross-coupling of aryl bromides with alkenes can provide access to diverse combinatorial chemical space. Two-component couplings between these partners are well-known, but three-component aryl-functionalizations of unactivated alkenes remain underdeveloped. In particular, the aryl-alkylation of unactivated alkenes would allow for rapid construction of molecular complexity and the expedient exploration of a pharmaceutically relevant and C(sp3)-rich structural landscape. Herein, we report a general approach toward the aryl-alkylation of alkenes through a triple radical sorting mechanism. Over the course of the reaction, a high energy aryl radical, a primary radical, and a hindered alkyl radical are simultaneously formed. Through mediation by a nickel-based catalyst, the three radicals are sorted into productive bond-forming pathways toward the efficient aryl-alkylation of alkenes. A wide range of electronically and sterically differentiated alkenes and aryl radical precursors can be used to access complex scaffolds. This method was further applied to the synthesis of highly substituted semisaturated fused heterocycles.

13.
J Am Chem Soc ; 146(18): 12300-12309, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38657210

RESUMEN

Metallaphotoredox cross-coupling is a well-established strategy for generating clinically privileged aliphatic scaffolds via single-electron reactivity. Correspondingly, expanding metallaphotoredox to encompass new C(sp3)-coupling partners could provide entry to a novel, medicinally relevant chemical space. In particular, alkenes are abundant, bench-stable, and capable of versatile C(sp3)-radical reactivity via metal-hydride hydrogen atom transfer (MHAT), although metallaphotoredox methodologies invoking this strategy remain underdeveloped. Importantly, merging MHAT activation with metallaphotoredox could enable the cross-coupling of olefins with feedstock partners such as alcohols, which undergo facile open-shell activation via photocatalysis. Herein, we report the first C(sp3)-C(sp3) coupling of MHAT-activated alkenes with alcohols by performing deoxygenative hydroalkylation via triple cocatalysis. Through synergistic Ir photoredox, Mn MHAT, and Ni radical sorting pathways, this branch-selective protocol pairs diverse olefins and methanol or primary alcohols with remarkable functional group tolerance to enable the rapid construction of complex aliphatic frameworks.

14.
J Am Chem Soc ; 146(12): 7942-7949, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38470101

RESUMEN

Here we report the design of a general, redox-switchable organophosphorus alkyl radical trap that enables the synthesis of a broad range of C(sp3)-P(V) modalities. This "plug-and-play" approach relies upon in situ activation of alcohols and O═P(R2)H motifs, two broadly available and inexpensive sources of molecular complexity. The mild, photocatalytic deoxygenative strategy described herein allows for the direct conversion of sugars, nucleosides, and complex pharmaceutical architectures to their organophosphorus analogs. This includes the facile incorporation of medicinally relevant phosphonate ester prodrugs.

15.
J Am Chem Soc ; 146(23): 15681-15687, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38813987

RESUMEN

Alcohols are among the most abundant chemical feedstocks, yet they remain vastly underutilized as coupling partners in transition metal catalysis. Herein, we describe a copper metallaphotoredox manifold for the open shell deoxygenative coupling of alcohols with N-nucleophiles to forge C(sp3)-N bonds, a linkage of high value in pharmaceutical agents that is challenging to access via conventional cross-coupling techniques. N-heterocyclic carbene (NHC)-mediated conversion of alcohols into the corresponding alkyl radicals followed by copper-catalyzed C-N coupling renders this platform successful for a broad range of structurally unbiased alcohols and 18 classes of N-nucleophiles.

16.
Chem Rev ; 122(2): 1485-1542, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34793128

RESUMEN

The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.


Asunto(s)
Electrones , Elementos de Transición , Catálisis , Níquel/química , Oxidación-Reducción
17.
Nature ; 559(7712): 83-88, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29925943

RESUMEN

Over the past three decades, considerable progress has been made in the development of methods to construct sp2 carbon-nitrogen (C-N) bonds using palladium, copper or nickel catalysis1,2. However, the incorporation of alkyl substrates to form sp3 C-N bonds remains one of the major challenges in the field of cross-coupling chemistry. Here we demonstrate that the synergistic combination of copper catalysis and photoredox catalysis can provide a general platform from which to address this challenge. This cross-coupling system uses naturally abundant alkyl carboxylic acids and commercially available nitrogen nucleophiles as coupling partners. It is applicable to a wide variety of primary, secondary and tertiary alkyl carboxylic acids (through iodonium activation), as well as a vast array of nitrogen nucleophiles: nitrogen heterocycles, amides, sulfonamides and anilines can undergo C-N coupling to provide N-alkyl products in good to excellent efficiency, at room temperature and on short timescales (five minutes to one hour). We demonstrate that this C-N coupling protocol proceeds with high regioselectivity using substrates that contain several amine groups, and can also be applied to complex drug molecules, enabling the rapid construction of molecular complexity and the late-stage functionalization of bioactive pharmaceuticals.


Asunto(s)
Carbono/química , Cobre/química , Descarboxilación , Nitrógeno/química , Procesos Fotoquímicos , Amidas/química , Aminas/química , Compuestos de Anilina/química , Ácidos Carboxílicos/química , Catálisis , Preparaciones Farmacéuticas/química , Sulfonamidas/química
18.
Nature ; 560(7716): 70-75, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30068953

RESUMEN

Despite the widespread success of transition-metal-catalysed cross-coupling methodologies, considerable limitations still exist in reactions at sp3-hybridized carbon atoms, with most approaches relying on prefunctionalized alkylmetal or bromide coupling partners1,2. Although the use of native functional groups (for example, carboxylic acids, alkenes and alcohols) has improved the overall efficiency of such transformations by expanding the range of potential feedstocks3-5, the direct functionalization of carbon-hydrogen (C-H) bonds-the most abundant moiety in organic molecules-represents a more ideal approach to molecular construction. In recent years, an impressive range of reactions that form C(sp3)-heteroatom bonds from strong C-H bonds has been reported6,7. Additionally, valuable technologies have been developed for the formation of carbon-carbon bonds from the corresponding C(sp3)-H bonds via substrate-directed transition-metal C-H insertion8, undirected C-H insertion by captodative rhodium carbenoid complexes9, or hydrogen atom transfer from weak, hydridic C-H bonds by electrophilic open-shell species10-14. Despite these advances, a mild and general platform for the coupling of strong, neutral C(sp3)-H bonds with aryl electrophiles has not been realized. Here we describe a protocol for the direct C(sp3) arylation of a diverse set of aliphatic, C-H bond-containing organic frameworks through the combination of light-driven, polyoxometalate-facilitated hydrogen atom transfer and nickel catalysis. This dual-catalytic manifold enables the generation of carbon-centred radicals from strong, neutral C-H bonds, which thereafter act as nucleophiles in nickel-mediated cross-coupling with aryl bromides to afford C(sp3)-C(sp2) cross-coupled products. This technology enables unprecedented, single-step access to a broad array of complex, medicinally relevant molecules directly from natural products and chemical feedstocks through functionalization at sites that are unreactive under traditional methods.


Asunto(s)
Carbono/química , Enlace de Hidrógeno , Productos Biológicos/síntesis química , Productos Biológicos/química , Catálisis , Níquel/química , Compuestos de Tungsteno/química
19.
J Am Chem Soc ; 145(5): 2787-2793, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36696091

RESUMEN

Methyl groups are well understood to play a critical role in pharmaceutical molecules, especially those bearing saturated heterocyclic cores. Accordingly, methods that install methyl groups onto complex molecules are highly coveted. Late-stage C-H functionalization is a particularly attractive approach, allowing chemists to bypass lengthy syntheses and facilitating the expedited synthesis of drug analogues. Herein, we disclose the direct introduction of methyl groups via C(sp3)-H functionalization of a broad array of saturated heterocycles, enabled by the merger of decatungstate photocatalysis and a unique nickel-mediated SH2 bond formation. To further demonstrate its synthetic utility as a tool for late-stage functionalization, this method was applied to a range of drug molecules en route to an array of methylated drug analogues.


Asunto(s)
Níquel , Metilación , Níquel/química
20.
J Am Chem Soc ; 145(14): 7736-7742, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36975797

RESUMEN

Alcohols are commercially abundant and structurally diverse reservoirs of sp3-hybridized chemical space. However, the direct utilization of alcohols in C-C bond-forming cross-couplings remains underexplored. Herein we report an N-heterocyclic carbene (NHC)-mediated deoxygenative alkylation of alcohols and alkyl bromides via nickel-metallaphotoredox catalysis. This C(sp3)-C(sp3) cross-coupling exhibits a broad scope and is capable of forming bonds between two secondary carbon centers, a longstanding challenge in the field. Highly strained three-dimensional systems such as spirocycles, bicycles, and fused rings were excellent substrates, enabling the synthesis of new molecular frameworks. Linkages between pharmacophoric saturated ring systems were readily forged, representing a three-dimensional alternative to traditional biaryl formation. The utility of this cross-coupling technology is highlighted with the expedited synthesis of bioactive molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA