RESUMEN
Replication of the mitochondrial genome and expression of the genes it encodes both depend on a sufficient supply of nucleotides to mitochondria. Accordingly, dysregulated nucleotide metabolism not only destabilises the mitochondrial genome, but also affects its transcription. Here, we report that a mitochondrial nucleoside diphosphate kinase, NME6, supplies mitochondria with pyrimidine ribonucleotides that are necessary for the transcription of mitochondrial genes. Loss of NME6 function leads to the depletion of mitochondrial transcripts, as well as destabilisation of the electron transport chain and impaired oxidative phosphorylation. These deficiencies are rescued by an exogenous supply of pyrimidine ribonucleosides. Moreover, NME6 is required for the maintenance of mitochondrial DNA when the access to cytosolic pyrimidine deoxyribonucleotides is limited. Our results therefore reveal an important role for ribonucleotide salvage in mitochondrial gene expression.
Asunto(s)
Genes Mitocondriales , Pirimidinas , Pirimidinas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Nucleótidos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Ribonucleótidos/genéticaRESUMEN
Reprogramming of mitochondria provides cells with the metabolic flexibility required to adapt to various developmental transitions such as stem cell activation or immune cell reprogramming, and to respond to environmental challenges such as those encountered under hypoxic conditions or during tumorigenesis1-3. Here we show that the i-AAA protease YME1L rewires the proteome of pre-existing mitochondria in response to hypoxia or nutrient starvation. Inhibition of mTORC1 induces a lipid signalling cascade via the phosphatidic acid phosphatase LIPIN1, which decreases phosphatidylethanolamine levels in mitochondrial membranes and promotes proteolysis. YME1L degrades mitochondrial protein translocases, lipid transfer proteins and metabolic enzymes to acutely limit mitochondrial biogenesis and support cell growth. YME1L-mediated mitochondrial reshaping supports the growth of pancreatic ductal adenocarcinoma (PDAC) cells as spheroids or xenografts. Similar changes to the mitochondrial proteome occur in the tumour tissues of patients with PDAC, suggesting that YME1L is relevant to the pathophysiology of these tumours. Our results identify the mTORC1-LIPIN1-YME1L axis as a post-translational regulator of mitochondrial proteostasis at the interface between metabolism and mitochondrial dynamics.
Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Metabolismo de los Lípidos , Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Hipoxia de la Célula , Línea Celular , Proliferación Celular , Humanos , Lípidos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metaloendopeptidasas/genética , Proteínas Mitocondriales/genética , ProteolisisRESUMEN
BACKGROUND: The mitochondrial intermembrane space (IMS) is home to proteins fulfilling numerous essential cellular processes, particularly in metabolism and mitochondrial function. All IMS proteins are nuclear encoded and synthesized in the cytosol and must therefore be correctly targeted and transported to the IMS, either through mitochondrial targeting sequences or conserved cysteines and the mitochondrial disulfide relay system. The mitochondrial oxidoreductase MIA40, which catalyzes disulfide formation in the IMS, is imported by the combined action of the protein AIFM1 and MIA40 itself. Here, we characterized the function of the conserved highly negatively charged C-terminal region of human MIA40. RESULTS: We demonstrate that the C-terminal region is critical during posttranslational mitochondrial import of MIA40, but is dispensable for MIA40 redox function in vitro and in intact cells. The C-terminal negatively charged region of MIA40 slowed import into mitochondria, which occurred with a half-time as slow as 90 min. During this time, the MIA40 precursor persisted in the cytosol in an unfolded state, and the C-terminal negatively charged region served in protecting MIA40 from proteasomal degradation. This stabilizing property of the MIA40 C-terminal region could also be conferred to a different mitochondrial precursor protein, COX19. CONCLUSIONS: Our data suggest that the MIA40 precursor contains the stabilizing information to allow for postranslational import of sufficient amounts of MIA40 for full functionality of the essential disulfide relay. We thereby provide for the first time mechanistic insights into the determinants controlling cytosolic surveillance of IMS precursor proteins.
Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Citosol/metabolismo , Células HEK293 , Humanos , Microorganismos Modificados Genéticamente/química , Microorganismos Modificados Genéticamente/metabolismo , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismoRESUMEN
Mitochondria are multifaceted metabolic organelles and adapt dynamically to various developmental transitions and environmental challenges. The metabolic flexibility of mitochondria is provided by alterations in the mitochondrial proteome and is tightly coupled to changes in the shape of mitochondria. Mitochondrial proteases are emerging as important posttranslational regulators of mitochondrial plasticity. The i-AAA protease YME1L, an ATP-dependent proteolytic complex in the mitochondrial inner membrane, coordinates mitochondrial biogenesis and dynamics with the metabolic output of mitochondria. mTORC1-dependent lipid signaling drives proteolytic rewiring of mitochondria by YME1L. While the tissue-specific loss of YME1L in mice is associated with heart failure, disturbed eye development, and axonal degeneration in the spinal cord, YME1L activity supports growth of pancreatic ductal adenocarcinoma cells. YME1L thus represents a key regulatory protease determining mitochondrial plasticity and metabolic reprogramming and is emerging as a promising therapeutic target.
Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Mitocondrias/metabolismo , Animales , HumanosRESUMEN
The regulation of mitochondrial dynamics by the GTPase OPA1, which is located at the inner mitochondrial membrane, is crucial for adapting mitochondrial function and preserving cellular health. OPA1 governs the delicate balance between fusion and fission in the dynamic mitochondrial network. A disturbance of this balance, often observed under stress and pathologic conditions, causes mitochondrial fragmentation and can ultimately result in cell death. As discussed in this Commentary, these morphological changes are regulated by proteolytic processing of OPA1 by the inner-membrane peptidases YME1L (also known as YME1L1) and OMA1. Long, membrane-bound forms of OPA1 are required for mitochondrial fusion, but their processing to short, soluble forms limits fusion and can facilitate mitochondrial fission. Excessive OPA1 processing by the stress-activated protease OMA1 promotes mitochondrial fragmentation and, if persistent, triggers cell death and tissue degeneration in vivo The prevention of OMA1-mediated OPA1 processing and mitochondrial fragmentation might thus offer exciting therapeutic potential for human diseases associated with mitochondrial dysfunction.
Asunto(s)
Enfermedad , GTP Fosfohidrolasas/metabolismo , Animales , Muerte Celular , Humanos , Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo , ProteolisisRESUMEN
Mitochondrial dynamics play crucial roles in mitophagy-based mitochondrial quality control, but how these pathways are regulated to meet cellular energy demands remains obscure. Using non-transformed human RPE1 cells, we report that upregulation of mitochondrial oxidative phosphorylation alters mitochondrial dynamics to inhibit Parkin-mediated mitophagy. Despite the basal mitophagy rates remaining stable upon the switch to dependence on oxidative phosphorylation, mitochondria resist fragmentation when RPE1 cells are treated with the protonophore carbonyl cyanide m-chlorophenyl hydrazone. Mechanistically, we show that this is because cleavage of the inner membrane fusion factor L-OPA1 is prevented due to the failure to activate the inner membrane protease OMA1 in mitochondria that have a collapsed membrane potential. In parallel, mitochondria that use oxidative phosphorylation are protected from damage-induced fission through the impaired recruitment and activation of mitochondrial DRP1. Using OMA1-deficient MEF cells, we show that the preservation of a stable pool of L-OPA1 at the inner mitochondrial membrane is sufficient to delay mitophagy, even in the presence of Parkin. The capacity of cells that are dependent on oxidative phosphorylation to maintain substantial mitochondrial content in the face of acute damage has important implications for mitochondrial quality control in vivo.
Asunto(s)
GTP Fosfohidrolasas/metabolismo , Metaloendopeptidasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Animales , Apoptosis/fisiología , Línea Celular , Dinaminas , GTP Fosfohidrolasas/genética , Humanos , Metaloendopeptidasas/genética , Ratones , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Fosforilación OxidativaRESUMEN
Autophagy is an important stress response pathway responsible for the removal and recycling of damaged or redundant cytosolic constituents. Mitochondrial damage triggers selective mitochondrial autophagy (mitophagy), mediated by a variety of response factors including the Pink1/Parkin system. Using human retinal pigment epithelial cells stably expressing autophagy and mitophagy reporters, we have conducted parallel screens of regulators of endoplasmic reticulum (ER) and mitochondrial morphology and function contributing to starvation-induced autophagy and damage-induced mitophagy. These screens identified the ER chaperone and Ca2+ flux modulator, sigma non-opioid intracellular receptor 1 (SIGMAR1), as a regulator of autophagosome expansion during starvation. Screens also identified phosphatidyl ethanolamine methyl transferase (PEMT) and the IP3-receptors (IP3Rs) as mediators of Parkin-induced mitophagy. Further experiments suggested that IP3R-mediated transfer of Ca2+ from the ER lumen to the mitochondrial matrix via the mitochondrial Ca2+ uniporter (MCU) primes mitochondria for mitophagy. Importantly, recruitment of Parkin to damaged mitochondria did not require IP3R-mediated ER-to-mitochondrial Ca2+ transfer, but mitochondrial clustering downstream of Parkin recruitment was impaired, suggesting involvement of regulators of mitochondrial dynamics and/or transport. Our data suggest that Ca2+ flux between ER and mitochondria at presumed ER/mitochondrial contact sites is needed both for starvation-induced autophagy and for Parkin-mediated mitophagy, further highlighting the importance of inter-organellar communication for effective cellular homeostasis.
Asunto(s)
Autofagia , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/patología , ARN Interferente Pequeño/genética , Receptores sigma/antagonistas & inhibidores , Epitelio Pigmentado de la Retina/metabolismo , Células Cultivadas , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias/metabolismo , Fosfatidiletanolamina N-Metiltransferasa/genética , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Receptores sigma/genética , Epitelio Pigmentado de la Retina/citología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Receptor Sigma-1RESUMEN
Mitochondrial gene expression is a compartmentalised process essential for metabolic function. The replication and transcription of mitochondrial DNA (mtDNA) take place at nucleoids, whereas the subsequent processing and maturation of mitochondrial RNA (mtRNA) and mitoribosome assembly are localised to mitochondrial RNA granules. The bidirectional transcription of circular mtDNA can lead to the hybridisation of polycistronic transcripts and the formation of immunogenic mitochondrial double-stranded RNA (mt-dsRNA). However, the mechanisms that regulate mt-dsRNA localisation and homeostasis are largely unknown. With super-resolution microscopy, we show that mt-dsRNA overlaps with the RNA core and associated proteins of mitochondrial RNA granules but not nucleoids. Mt-dsRNA foci accumulate upon the stimulation of cell proliferation and their abundance depends on mitochondrial ribonucleotide supply by the nucleoside diphosphate kinase, NME6. Consequently, mt-dsRNA foci are profuse in cultured cancer cells and malignant cells of human tumour biopsies. Our results establish a new link between cell proliferation and mitochondrial nucleic acid homeostasis.
Asunto(s)
Ciclo Celular , Proliferación Celular , Homeostasis , Mitocondrias , ARN Bicatenario , ARN Mitocondrial , Humanos , Homeostasis/genética , ARN Mitocondrial/metabolismo , ARN Mitocondrial/genética , ARN Bicatenario/metabolismo , ARN Bicatenario/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Ciclo Celular/genética , Proliferación Celular/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Línea Celular Tumoral , Nucleósido-Difosfato Quinasa/metabolismo , Nucleósido-Difosfato Quinasa/genética , Transcripción GenéticaRESUMEN
Mechanical forces regulate metabolism in healthy and cancerous tissue. A new study reveals that extracellular matrix stiffness modulates mitochondrial shape and function. The mechanical reprogramming of mitochondria confers resistance to oxidative stress and promotes survival.
Asunto(s)
Mitocondrias , Estrés Oxidativo , Mitocondrias/metabolismo , Estrés Oxidativo/fisiologíaRESUMEN
Mitochondria are master regulators of metabolism and have emerged as key signalling organelles of the innate immune system. Each mitochondrion harbours potent agonists of inflammation, including mitochondrial DNA (mtDNA), which are normally shielded from the rest of the cell and extracellular environment and therefore do not elicit detrimental inflammatory cascades. Mitochondrial damage and dysfunction can lead to the cytosolic and extracellular exposure of mtDNA, which triggers inflammation in a number of diseases including autoimmune neurodegenerative disorders. However, recent research has revealed that the extra-mitochondrial exposure of mtDNA is not solely a negative consequence of mitochondrial damage and pointed to an active role of mitochondria in innate immunity. Metabolic cues including nucleotide imbalance can stimulate the release of mtDNA from mitochondria in order to drive a type I interferon response. Moreover, important effectors of the innate immune response to pathogen infection, such as the mitochondrial antiviral signalling protein (MAVS), are located at the mitochondrial surface and modulated by the cellular metabolic status and mitochondrial dynamics. In this review, we explore how and why metabolism and innate immunity converge at the mitochondria and describe how mitochondria orchestrate innate immune signalling pathways in different metabolic scenarios. Understanding how cellular metabolism and metabolic programming of mitochondria are translated into innate immune responses bears relevance to a broad range of human diseases including cancer.
RESUMEN
Mitochondria are essential organelles containing approximately 1,500 proteins. Only approximately 1% of these proteins are synthesized inside mitochondria, whereas the remaining 99% are synthesized as precursors on cytosolic ribosomes and imported into the organelle. Various tools and techniques to analyze the import process have been developed. Among them, in vitro reconstituted import systems are of importance to study these processes in detail. These experiments monitor the import reaction of mitochondrial precursors that were previously radiolabeled in a cell-free environment. However, the methods described have been mostly performed in mitochondria isolated from S. cerevisiae. Here, we describe the adaptation of this powerful assay to import proteins into crude mitochondria isolated from human tissue culture cells. Graphic abstract: Overview of the assay to monitor protein import into mitochondria isolated from human cells.
RESUMEN
Cytosolic mitochondrial DNA (mtDNA) elicits a type I interferon response, but signals triggering the release of mtDNA from mitochondria remain enigmatic. Here, we show that mtDNA-dependent immune signalling via the cyclic GMP-AMP synthaseâstimulator of interferon genesâTANK-binding kinase 1 (cGAS-STING-TBK1) pathway is under metabolic control and is induced by cellular pyrimidine deficiency. The mitochondrial protease YME1L preserves pyrimidine pools by supporting de novo nucleotide synthesis and by proteolysis of the pyrimidine nucleotide carrier SLC25A33. Deficiency of YME1L causes inflammation in mouse retinas and in cultured cells. It drives the release of mtDNA and a cGAS-STING-TBK1-dependent inflammatory response, which requires SLC25A33 and is suppressed upon replenishment of cellular pyrimidine pools. Overexpression of SLC25A33 is sufficient to induce immune signalling by mtDNA. Similarly, depletion of cytosolic nucleotides upon inhibition of de novo pyrimidine synthesis triggers mtDNA-dependent immune responses in wild-type cells. Our results thus identify mtDNA release and innate immune signalling as a metabolic response to cellular pyrimidine deficiencies.
Asunto(s)
ADN Mitocondrial/genética , Inmunidad Innata , Mitocondrias/genética , Mitocondrias/metabolismo , Nucleótidos de Pirimidina/metabolismo , Animales , Citosol/metabolismo , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Ratones , Modelos Biológicos , Nucleotidiltransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de SeñalRESUMEN
In pancreatic ductal adenocarcinoma (PDAC), the tumor stroma constitutes most of the cell mass and contributes to therapy resistance and progression. Here we show a hitherto unknown metabolic cooperation between pancreatic stellate cells (PSCs) and tumor cells through Interleukin 17B/Interleukin 17B receptor (IL-17B/IL-17RB) signaling. Tumor-derived IL-17B carrying extracellular vesicles (EVs) activated stromal PSCs and induced the expression of IL-17RB. PSCs increased oxidative phosphorylation while reducing mitochondrial turnover. PSCs activated tumor cells in a feedback loop. Tumor cells subsequently increased oxidative phosphorylation and decreased glycolysis partially via IL-6. In vivo, IL-17RB overexpression in PSCs accelerated tumor growth in a co-injection xenograft mouse model. Our results demonstrate a tumor-to-stroma feedback loop increasing tumor metabolism to accelerate tumor growth under optimal nutritional conditions.
RESUMEN
Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing.
Asunto(s)
Macrófagos , Cicatrización de Heridas , Animales , Macrófagos/metabolismo , Ratones , Mitocondrias/metabolismoRESUMEN
Metabolism rewiring is an important hallmark of cancers. Being one of the most abundant free amino acids in the human blood, glutamine supports bioenergetics and biosynthesis, tumor growth, and the production of antioxidants through glutaminolysis in cancers. In glutamine dependent cancer cells, more than half of the tricarboxylic/critic acid (TCA) metabolites are derived from glutamine. Glutaminolysis controls the process of converting glutamine into TCA cycle metabolites through the regulation of multiple enzymes, among which the glutaminase shows the importance as the very first step in this process. Targeting glutaminolysis via glutaminase inhibition emerges as a promising strategy to disrupt cancer metabolism and tumor progression. Here, we review the regulation of glutaminase and the role of glutaminase in cancer metabolism and metastasis. Furthermore, we highlight the glutaminase inhibitor based metabolic therapy strategy and their potential applications in clinical scenarios.
RESUMEN
Mitochondria are metabolic hubs that use multiple proteases to maintain proteostasis and to preserve their overall quality. A decline of mitochondrial proteolysis promotes cellular stress and may contribute to the aging process. Mitochondrial proteases have also emerged as tightly regulated enzymes required to support the remarkable mitochondrial plasticity necessary for metabolic adaptation in a number of physiological scenarios. Indeed, the mutation and dysfunction of several mitochondrial proteases can cause specific human diseases with severe metabolic phenotypes. Here, we present an overview of the proteolytic regulation of key mitochondrial functions such as respiration, lipid biosynthesis, and mitochondrial dynamics, all of which are required for metabolic control. We also pay attention to how mitochondrial proteases are acutely regulated in response to cellular stressors or changes in growth conditions, a greater understanding of which may one day uncover their therapeutic potential.
Asunto(s)
ADN Mitocondrial/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Genoma Mitocondrial/fisiología , Péptido Hidrolasas/metabolismo , Proteínas/metabolismo , ADN Mitocondrial/genética , Péptido Hidrolasas/genéticaRESUMEN
The mitochondrial presequence translocation machinery (TIM23 complex) is conserved between the yeast Saccharomyces cerevisiae and humans; however, functional characterization has been mainly performed in yeast. Here, we define the constituents of the human TIM23 complex using mass spectrometry and identified ROMO1 as a new translocase constituent with an exceptionally short half-life. Analyses of a ROMO1 knockout cell line revealed aberrant inner membrane structure and altered processing of the GTPase OPA1. We show that in the absence of ROMO1, mitochondria lose the inner membrane YME1L protease, which participates in OPA1 processing and ROMO1 turnover. While ROMO1 is dispensable for general protein import along the presequence pathway, we show that it participates in the dynamics of TIM21 during respiratory chain biogenesis and is specifically required for import of YME1L. This selective import defect can be linked to charge distribution in the unusually long targeting sequence of YME1L. Our analyses establish an unexpected link between mitochondrial protein import and inner membrane protein quality control.
Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Metaloendopeptidasas/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Transporte de Proteínas/fisiología , Saccharomyces cerevisiaeRESUMEN
Disturbances in the morphology and function of mitochondria cause neurological diseases, which can affect the central and peripheral nervous system. The i-AAA protease YME1L ensures mitochondrial proteostasis and regulates mitochondrial dynamics by processing of the dynamin-like GTPase OPA1. Mutations in YME1L cause a multi-systemic mitochondriopathy associated with neurological dysfunction and mitochondrial fragmentation but pathogenic mechanisms remained enigmatic. Here, we report on striking cell-type-specific defects in mice lacking YME1L in the nervous system. YME1L-deficient mice manifest ocular dysfunction with microphthalmia and cataracts and develop deficiencies in locomotor activity due to specific degeneration of spinal cord axons, which relay proprioceptive signals from the hind limbs to the cerebellum. Mitochondrial fragmentation occurs throughout the nervous system and does not correlate with the degenerative phenotype. Deletion of Oma1 restores tubular mitochondria but deteriorates axonal degeneration in the absence of YME1L, demonstrating that impaired mitochondrial proteostasis rather than mitochondrial fragmentation causes the observed neurological defects.
Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/deficiencia , Metaloendopeptidasas/deficiencia , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/fisiopatología , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/fisiopatología , Animales , Catarata/etiología , Catarata/patología , Modelos Animales de Enfermedad , GTP Fosfohidrolasas/metabolismo , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/patología , Ratones , Microftalmía/etiología , Microftalmía/patología , Proteínas Mitocondriales/deficiencia , Médula Espinal/patologíaRESUMEN
The development of modern high-throughput instrumentation and improved core facility infrastructures leads to an accumulation of large amounts of scientific data. However, for a majority of scientists the comprehensive analysis and visualization of their data goes beyond their expertise. To reduce this hurdle, we developed a software suite called Instant Clue that helps scientists to visually analyze data and to gain insights into biological processes from their high-dimensional dataset. Instant Clue combines the power of visual and statistical analytics using a straight forward drag & drop approach making the software highly intuitive. Additionally, it offers a comprehensive portfolio of statistical tools for systematic analysis such as dimensional reduction, (un)-supervised learning, clustering, multi-block (omics) integration and curve fitting. Charts can be combined with high flexibility into a main figure template for direct usage in scientific publications. Even though Instant Clue was developed with the omics-sciences in mind, users can analyze any kind of data from low to high dimensional data sets. The open-source software is available for Windows and Mac OS ( http://www.instantclue.uni-koeln.de ) and is accompanied by a detailed video tutorial series.
Asunto(s)
Programas Informáticos , Algoritmos , Visualización de DatosRESUMEN
Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans.