Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Am Chem Soc ; 146(12): 7931-7935, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38488290

RESUMEN

The oxygen reduction reaction (ORR) is important for alternative energy and industrial oxidation processes. Herein, an iminium-based organoelectrocatalyst (im+) for the ORR with trifluoroacetic acid as a proton source in acetonitrile solution under both electrochemical and spectrochemical conditions using decamethylferrocene as a chemical reductant is reported. Under spectrochemical conditions, H2O2 is the primary reaction product, while under electrochemical conditions H2O is produced. This difference in selectivity is attributed to the interception of the free superoxide intermediate under electrochemical conditions by the reduced catalyst, accessing an alternate inner-sphere pathway.

2.
J Am Chem Soc ; 145(4): 2013-2027, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652254

RESUMEN

Homogeneous electrocatalysis has been well studied over the past several decades for the conversion of small molecules to useful products for green energy applications or as chemical feedstocks. However, in order for these catalyst systems to be used in industrial applications, their activity and stability must be improved. In naturally occurring enzymes, redox equivalents (electrons, often in a concerted manner with protons) are delivered to enzyme active sites by small molecules known as redox mediators (RMs). Inspired by this, co-electrocatalytic systems with homogeneous catalysts and RMs have been developed for the conversion of alcohols, nitrogen, unsaturated organic substrates, oxygen, and carbon dioxide. In these systems, the RMs have been shown to both increase the activity of the catalyst and shift selectivity to more desired products by altering catalytic cycles and/or avoiding high-energy intermediates. However, the area is currently underdeveloped and requires additional fundamental advancements in order to become a more general strategy. Here, we summarize the recent examples of homogeneous co-electrocatalysis and discuss possible future directions for the field.

3.
J Chem Phys ; 159(19)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37982482

RESUMEN

The ability to synthetically tune the ligand frameworks of redox-active molecules is of critical importance to the economy of solar fuels because manipulating their redox properties can afford control over the operating potentials of sustained electrocatalytic or photoelectrocatalytic processes. The electronic and steric properties of 2,2':6',2″-terpyridine (Terpy) ligand frameworks can be tuned by functional group substitution on ligand backbones, and these correlate strongly to their Hammett parameters. The synthesis of a new series of tridentate meridional ligands of 2,4,6-trisubstituted pyridines that engineers the ability to finely tune the redox potentials of cobalt complexes to more positive potentials than that of their Terpy analogs is achieved by aryl-functionalizing at the four-position and by including isoquinoline at the two- and six-positions of pyridine (Aryl-DiQ). Their cobalt complex syntheses, their electronic properties, and their catalytic activity for carbon dioxide (CO2) reduction are reported and compared to their Terpy analogs. The cobalt derivatives generally experience a positive shift in their redox features relative to the Terpy-based analogs, covering a complementary potential range. Although those evaluated fail to produce any quantifiable products for the reduction of CO2 and suffer from long-term instability, these results suggest possible alternate strategies for stabilizing these compounds during catalysis. We speculate that lower equilibrium association constants to the cobalt center are intrinsic to these ligands, which originate from a steric interaction between protons on the pyridine and isoquinoline moieties. Nevertheless, the new Aryl-DiQ ligand framework has been engineered to selectively tune homoleptic cobalt complexes' redox potentials.

4.
Inorg Chem ; 61(22): 8387-8392, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35594192

RESUMEN

We report a new terpyridine-based FeN3O catalyst, Fe(tpytbupho)Cl2, which reduces O2 to H2O. Variable concentration and variable temperature spectrochemical studies with decamethylferrocene as a chemical reductant in acetonitrile solution enabled the elucidation of key reaction parameters for the catalytic reduction of O2 to H2O by Fe(tpytbupho)Cl2. These mechanistic studies suggest that a 2 + 2 mechanism is operative, where hydrogen peroxide is produced as a discrete intermediate, prior to further reduction to H2O. Consistent with this proposal, the spectrochemically measured first-order rate constant k (s-1) value for H2O2 reduction is larger than that for O2 reduction. Further, significant H2O2 production is observed under hydrodynamic conditions in rotating ring-disk electrode measurements, where the product can be swept away from the cathode surface before further reduction occurs.


Asunto(s)
Peróxido de Hidrógeno , Catálisis , Oxidación-Reducción
5.
Inorg Chem ; 61(43): 16963-16970, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36260749

RESUMEN

Electrocatalyst design and optimization strategies continue to be an active area of research interest for the applied use of renewable energy resources. The electrocatalytic conversion of carbon dioxide (CO2) is an attractive approach in this context because of the added potential benefit of addressing its rising atmospheric concentrations. In previous experimental and computational studies, we have described the mechanism of the first molecular Cr complex capable of electrocatalytically reducing CO2 to carbon monoxide (CO) in the presence of an added proton donor, which contained a redox-active 2,2'-bipyridine (bpy) fragment, CrN2O2. The high selectivity for CO in the bpy-based system was dependent on a delocalized CrII(bpy•-) active state. Subsequently, we became interested in exploring how expanding the polypyridyl ligand core would impact the selectivity and activity during electrocatalytic CO2 reduction. Here, we report a new CrN3O catalyst, Cr(tpytbupho)Cl2 (1), where 2-(2,2':6',2″-terpyridin-6-yl)-4,6-di-tert-butylphenolate = [tpytbupho]-, which reduces CO2 to CO with almost quantitative selectivity via a different mechanism than our previously reported Cr(tbudhbpy)Cl(H2O) catalyst. Computational analyses indicate that, although the stoichiometry of both reactions is identical, changes in the observed rate law are the combined result of a decrease in the intrinsic ligand charge (L3X vs L2X2) and an increase in the ligand redox activity, which result in increased electronic coupling between the doubly reduced tpy fragment of the ligand and the CrII center. The strong electronic coupling enhances the rate of protonation and subsequent C-OH bond cleavage, resulting in CO2 binding becoming the rate-determining step, which is an uncommon mechanism during protic CO2 reduction.

6.
Angew Chem Int Ed Engl ; 61(1): e202109645, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34695281

RESUMEN

The electrocatalytic reduction of CO2 is an appealing method for converting renewable energy sources into value-added chemical feedstocks. We report a co-electrocatalytic system for the reduction of CO2 to CO comprised of a molecular Cr complex and dibenzothiophene-5,5-dioxide (DBTD) as a redox mediator, which achieves high activity (TOF=1.51-2.84×105  s-1 ) and quantitative selectivity. Under aprotic or protic conditions, DBTD produces a co-electrocatalytic response with 1 by coordinating trans to the site of CO2 binding and mediating electron transfer from the electrode with quantitative efficiency for CO. This assembly is reliant on through-space electronic conjugation between the π frameworks of DBTD and the bpy fragment of the catalyst ligand, with contributions from dispersive interactions and weak sulfone coordination.

7.
J Am Chem Soc ; 143(40): 16411-16418, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34606274

RESUMEN

We report a bioinspired non-heme Fe complex with a tripodal [N3O]- ligand framework (Fe(PMG)(Cl)2) that is electrocatalytically active toward dioxygen reduction with acetic acid as a proton source in acetonitrile solution. Under electrochemical and chemical conditions, Fe(PMG)(Cl)2 selectively produces water via a 2+2 mechanism, where H2O2 is generated as a discrete intermediate species before further reduction to two equivalents of H2O. Mechanistic studies support a catalytic cycle for dioxygen reduction where an off-cycle peroxo dimer species is the resting state of the catalyst. Spectroscopic analysis of the reduced complex FeII(PMG)Cl shows the stoichiometric formation of an Fe(III)-hydroxide species following exposure to H2O2; no catalytic activity for H2O2 disproportionation is observed, although the complex is electrochemically active for H2O2 reduction to H2O. Electrochemical studies, spectrochemical experiments, and DFT calculations suggest that the carboxylate moiety of the ligand is sensitive to hydrogen-bonding interactions with the acetic acid proton donor upon reduction from Fe(III)/(II), favoring chloride loss trans to the tris-alkyl amine moiety of the ligand framework. These results offer insight into how mononuclear non-heme Fe active sites in metalloproteins distribute added charge and poise proton donors during reactions with dioxygen.


Asunto(s)
Compuestos Férricos
8.
J Am Chem Soc ; 143(33): 13065-13073, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34380313

RESUMEN

Generally, cobalt-N2O2 complexes show selectivity for hydrogen peroxide during electrochemical dioxygen (O2) reduction. We recently reported a Co(III)-N2O2 complex with a 2,2'-bipyridine-based ligand backbone which showed alternative selectivity: H2O was observed as the primary reduction product from O2 (71 ± 5%) with decamethylferrocene as a chemical reductant and acetic acid as a proton donor in methanol solution. We hypothesized that the key selectivity difference in this case arises in part from increased favorability of protonation at the distal O position of the key intermediate Co(III)-hydroperoxide species. To interrogate this hypothesis, we have prepared a new Co(III) compound that contains pendent -OMe groups poised to direct protonation toward the proximal O atom of this hydroperoxo intermediate. Mechanistic studies in acetonitrile (MeCN) solution reveal two regimes are possible in the catalytic response, dependent on added acid strength and the presence of the pendent proton donor relay. In the presence of stronger acids, the activity of the complex containing pendent relays becomes O2 dependent, implying a shift to Co(III)-superoxide protonation as the rate-determining step. Interestingly, the inclusion of the relay results in primarily H2O2 production in MeCN, despite minimal difference between the standard reduction potentials of the three complexes tested. EPR spectroscopic studies indicate the formation of Co(III)-superoxide species in the presence of exogenous base, with greater O2 reactivity observed in the presence of the pendent -OMe groups.


Asunto(s)
Cobalto/química , Complejos de Coordinación/química , Peróxido de Hidrógeno/química , Oxígeno/química , Piridinas/química , Estructura Molecular , Oxidación-Reducción
9.
Inorg Chem ; 60(6): 3635-3650, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33657314

RESUMEN

A variety of molecular transition metal-based electrocatalysts for the reduction of carbon dioxide (CO2) have been developed to explore the viability of utilization strategies for addressing its rising atmospheric concentrations and the corresponding effects of global warming. Concomitantly, this approach could also meet steadily increasing global energy demands for value-added carbon-based chemical feedstocks as nonrenewable petrochemical resources are consumed. Reports on the molecular electrocatalytic reduction of CO2 mediated by chromium (Cr) complexes are scarce relative to other earth-abundant transition metals. Recently, our group reported a Cr complex that can efficiently catalyze the reduction of CO2 to carbon monoxide (CO) at low overpotentials. Here, we present new mechanistic insight through a computational (density functional theory) study, exploring the origin of kinetic selectivity, relative energetic positioning of the intermediates, speciation with respect to solvent coordination and spin state, as well as the role of the redox-active bipyridine moiety. Importantly, these studies suggest that under certain reducing conditions, the formation of bicarbonate could become a competitive reaction pathway, informing new areas of interest for future experimental studies.

10.
Inorg Chem ; 59(3): 1883-1892, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31935070

RESUMEN

A significant number of molecular catalysts have been developed for electrochemical CO2 reduction with high efficiency and selectivity; however, testing of these electrocatalysts in an application-ready system is lacking. Here, we present an example of a nonaqueous flow cell electrolyzer with [Ni(cyclam)]2+ as the homogeneous electrocatalyst for CO2 reduction. Using ferrocene as a sacrificial electron donor and ammonium salts as both electrolyte and proton donor, efficient catalytic CO2 reduction is achieved. The nonaqueous design shows high selectivity for the reduction of CO2 to CO (>80%) and achieves high current densities with a graphite felt working electrode (up to 50 mA·cm-2 with 0.5 M proton donor in MeCN solution), producing >40 mL·h-1 of CO. The choice of a molecular electrocatalyst, solvent, and proton donor are the key factors for achieving high activity with an efficient flow electrolyzer and the eventual development of a viable continuous process.

11.
Inorg Chem ; 59(9): 5854-5864, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32324404

RESUMEN

Previously, we reported an iron(III) complex with 6,6'-([2,2'-bipyridine]-6,6'-diyl)bis(2,4-ditertbutyl-phenol) as a ligand (Fe(tbudhbpy)Cl, 1) as catalytically competent for the electrochemical reduction of CO2 to formate (Faradaic efficiency FEHCO2- = 68 ± 4%). In mechanistic experiments, an essential component was found to be a pre-equilibrium reaction involving the association of the proton donor with the catalyst, which preceded proton transfer to the Fe-bound O atoms upon reduction of the Fe center. Here, we report the synthesis, structural characterization, and reactivity of two iron(III) compounds with 6,6'-([2,2'-bipyridine]-6,6'-diyl)bis(2-methoxy-4-methylphenol) (mecrebpy[H]2, Fe(mecrebpy)Cl, 2) and 6,6'-([2,2'-bipyridine]-6,6'-diyl)bis(4-(tert-butyl)benzene-1,2-diol) (tbucatbpy[H]4, Fe(tbucatbpy), 3) as ligands, where pendent -OMe and -OH groups are poised to modify the protonation reaction involving the Fe-bound O atoms. Differences in selectivity and activity for the electrocatalytic reduction of carbon dioxide (CO2) to formate (HCO2-) between complexes 1-3 were assessed via cyclic voltammetry and controlled potential electrolysis (CPE) experiments in N,N-dimethylformamide. Mechanistic studies suggest that the O atoms in the secondary coordination sphere are important for relaying the exogenous proton donor to the active site through a preconcentration effect, which leads to the JHCO2- (partial catalytic current density for formate) increasing by 3.3-fold for 2 and 1.2-fold for 3 in comparison to the JHCO2- of 1. These results also suggest that there is a difference in the strength of the interaction between the pendent functional groups and the sacrificial proton donor between 2 and 3, resulting in quantifiable differences in catalytic activity and efficiency. CPE experiments demonstrate an increased FEHCO2- = 85 ± 2% for 2, whereas 3 had a lower FEHCO2- = 71 ± 3%, with CO and H2 generated as co-products in each case to reach mass balance. These results indicate that using secondary sphere moieties to modulate metal-ligand interactions and multisite electron and proton transfer reactivity in the primary coordination sphere through reactant preconcentration can be a powerful strategy for enhancing electrocatalytic activity and selectivity.

12.
J Am Chem Soc ; 141(10): 4379-4387, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30712355

RESUMEN

The selective electrocatalytic reduction of dioxygen (O2) to hydrogen peroxide (H2O2) could be an alternative to the anthraquinone process used industrially, as well as enable the on-demand production of a useful chemical oxidant, obviating the need for long-term storage. There are challenges associated with this, since the two-proton/two-electron reduction of H2O2 to two equivalents of water (H2O) or disproportionation to O2 and H2O can be competing reactions. Recently, we reported a Mn(III) Schiff base-type complex, Mn(tbudhbpy)Cl, where 6,6'-di(3,5-di- tert-butyl-2-phenolate)-2,2'-bipyridine = [tbudhbpy]2-, which is active for the electrocatalytic reduction of O2 to H2O2 (ca. 80% selectivity). The less-than-quantitative selectivity could be attributed in part to a thermal disproportionation reaction of H2O2 to O2 and H2O. To understand the mechanism in greater detail, spectrochemical stopped-flow and electrochemical techniques were employed to examine the catalytic rate law and kinetic reaction parameters. Under electrochemical conditions, the catalyst produces H2O2 by an ECCEC mechanism with appreciable rates down to overpotentials of 20 mV and exhibits a catalytic response with a strong dependence on proton donor p Ka. Mechanistic studies suggest that under spectrochemical conditions, where the homogeneous reductant decamethylferrocene (Cp*2Fe) is used, H2O2 is instead produced via a disproportionation pathway, which does not show a strong acid dependence. These results demonstrate that differences in mechanistic pathways can occur for homogeneous catalysts in redox processes, dependent on whether an electrode or homogeneous reductant is used.

14.
Chemistry ; 25(24): 6098-6101, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-30791170

RESUMEN

Carbenes are known to activate carbon dioxide to form zwitterionic adducts. Their inherent metal-free redox activity remains understudied. Herein, we demonstrate that zwitterionic adducts of carbon dioxide formed with cyclic(alkyl)(amino) carbenes are not only redox active, but they can mediate the stoichiometric reductive disproportionation of carbon dioxide to carbon monoxide and carbonate. Infrared spectroelectrochemical experiments show that the reaction proceeds through an intermediate radical anion formed by one-electron reduction, ultimately generating a ketene product and carbonate in the absence of additional organic or inorganic reagents.

15.
J Am Chem Soc ; 140(9): 3232-3241, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29216711

RESUMEN

The synthesis and electrocatalytic reduction of dioxygen by a molecular manganese(III) complex with a tetradentate dianionic bipyridine-based ligand is reported. Electrochemical characterization indicates a Nernstian dependence on the added proton source for the reduction of Mn(III) to Mn(II). The resultant species is competent for the reduction of dioxygen to H2O2 with 81 ± 4% Faradaic efficiency. Mechanistic studies suggest that the catalytically active species has been generated through the interaction of the added proton donor and the parent Mn complex, resulting in the protonation of a coordinated phenolate moiety following the single-electron reduction, generating a neutral species with a vacant coordination site at the metal center. As a consequence, the active catalyst has a pendent proton source in close proximity to the active site for subsequent intramolecular reactions.

16.
Inorg Chem ; 57(4): 2111-2121, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29384368

RESUMEN

The synthesis, structural characterization, and reactivity of an iron(III) chloride compound of 6,6'-di(3,5-di-tert-butyl-2-hydroxybenzene)-2,2'-bipyridine (Fe(tbudhbpy)Cl), under electrochemically reducing conditions is reported. In the presence of carbon dioxide (CO2) under anhydrous conditions in N,N-dimethylformamide (DMF), this complex mediates the 2e- reductive disproportionation of two equivalents of CO2 to carbon monoxide (CO) and carbonate (CO32-). Upon addition of phenol (PhOH) as a proton source under CO2 saturation, catalytic current is observed; product analysis from controlled potential electrolysis experiments shows the majority product is formate (68 ± 4% Faradaic efficiency), with H2 as a minor product (30 ± 10% Faradaic efficiency) and minimal CO (1.1 ± 0.3% Faradaic efficiency). On the basis of data obtained from cyclic voltammetry and infrared spectroelectrochemistry (IR-SEC), the release of CO from intermediate Fe carbonyl species is extremely slow and undergoes competitive degradation, limiting the activity and lifetime of this catalyst. Mechanistic studies also indicate the phenolate moieties coordinated to Fe are sensitive to protonation in the reduced state, suggesting the possibility of cooperative pendent proton interactions being involved in CO2 reduction.

19.
Chemistry ; 23(36): 8619-8622, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28467613

RESUMEN

A series of polymeric frameworks with functional assemblies were designed to alter the catalytic activity of covalently bound ReI electrocatalysts. Norbornenyl polymers containing positively charged quaternary ammonium salts, neutral phenyl, or negatively charged trifluoroborate groups were end-labelled with a ReI fac-tricarbonyl bipyridine electrocatalyst via cross metathesis. Electrochemical studies in acetonitrile under an inert atmosphere and with saturated CO2 indicate that the quaternary ammonium polymers exhibit a significantly lower potential for CO2 reduction to CO (ca. 300 mV), while neutral polymers behave consistently with what has been reported for the free, molecular catalyst. In contrast, the trifluoroborate polymers displayed a negative shift in potential and catalytic activity was not observed. It is demonstrated that a single catalytically active complex can be installed onto a charged polymeric framework, thereby achieving environmentally tuned reduction potentials for CO2 reduction. These materials may be useful as polymer-based precursors for preparing catalytic and highly ordered structures such as thin films, porous catalytic membranes, or catalytic nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA