Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 623, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710891

RESUMEN

BACKGROUND: An increase in cancer stem cell (CSC) populations and their resistance to common treatments could be a result of c-Myc dysregulations in certain cancer cells. In the current study, we investigated anticancer effects of c-Myc decoy ODNs loaded-poly (methacrylic acid-co-diallyl dimethyl ammonium chloride) (PMA-DDA)-coated silica nanoparticles as carriers on cancer-like stem cells (NTERA-2). METHODS AND RESULTS: The physicochemical characteristics of the synthesized nanocomposites (SiO2@PMA-DDA-DEC) were analyzed using FT-IR, DLS, and SEM techniques. UV-Vis spectrophotometer was applied to analyze the release pattern of decoy ODNs from the nanocomposite. Furthermore, uptake, cell viability, apoptosis, and cell cycle assays were used to investigate the anticancer effects of nanocomposites loaded with c-Myc decoy ODNs on NTERA-2 cancer cells. The results of physicochemical analytics demonstrated that SiO2@PMA-DDA-DEC nanocomposites were successfully synthesized. The prepared nanocomposites were taken up by NTERA-2 cells with high efficiency, and could effectively inhibit cell growth and increase apoptosis rate in the treated cells compared to the control group. Moreover, SiO2@PMA-DDA nanocomposites loaded with c-Myc decoy ODNs induced cell cycle arrest at the G0/G1 phase in the treated cells. CONCLUSIONS: The conclusion drawn from this study is that c-Myc decoy ODN-loaded SiO2@PMA-DDA nanocomposites can effectively inhibit cell growth and induce apoptosis in NTERA-2 cancer cells. Moreover, given that a metal core is incorporated into this synthetic nanocomposite, it could potentially be used in conjunction with irradiation as part of a decoy-radiotherapy combinational therapy in future investigations.


Asunto(s)
Apoptosis , Proliferación Celular , Nanopartículas , Células Madre Neoplásicas , Proteínas Proto-Oncogénicas c-myc , Humanos , Apoptosis/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proliferación Celular/efectos de los fármacos , Nanopartículas/química , Línea Celular Tumoral , Nanocompuestos/química , Polielectrolitos/química , Oligodesoxirribonucleótidos/farmacología , Oligodesoxirribonucleótidos/química , Supervivencia Celular/efectos de los fármacos , Dióxido de Silicio/química , Poliaminas/química , Poliaminas/farmacología , Ciclo Celular/efectos de los fármacos
2.
BMC Bioinformatics ; 24(1): 67, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829109

RESUMEN

BACKGROUND: Streptococcus pneumoniae (Pneumococcus) has remained a leading cause of fatal infections such as pneumonia, meningitis, and sepsis. Moreover, this pathogen plays a major role in bacterial co-infection in patients with life-threatening respiratory virus diseases such as influenza and COVID-19. High morbidity and mortality in over one million cases, especially in very young children and the elderly, are the main motivations for pneumococcal vaccine development. Due to the limitations of the currently marketed polysaccharide-based vaccines, non-serotype-specific protein-based vaccines have received wide research interest in recent years. One step further is to identify high antigenic regions within multiple highly-conserved proteins in order to develop peptide vaccines that can affect various stages of pneumococcal infection, providing broader serotype coverage and more effective protection. In this study, immunoinformatics tools were used to design an effective multi-epitope vaccine in order to elicit neutralizing antibodies against multiple strains of pneumococcus. RESULTS: The B- and T-cell epitopes from highly protective antigens PspA (clades 1-5) and PhtD were predicted and immunodominant peptides were linked to each other with proper linkers. The domain 4 of Ply, as a potential TLR4 agonist adjuvant candidate, was attached to the end of the construct to enhance the immunogenicity of the epitope vaccine. The evaluation of the physicochemical and immunological properties showed that the final construct was stable, soluble, antigenic, and non-allergenic. Furthermore, the protein was found to be acidic and hydrophilic in nature. The protein 3D-structure was built and refined, and the Ramachandran plot, ProSA-web, ERRAT, and Verify3D validated the quality of the final model. Molecular docking analysis showed that the designed construct via Ply domain 4 had a strong interaction with TLR4. The structural stability of the docked complex was confirmed by molecular dynamics. Finally, codon optimization was performed for gene expression in E. coli, followed by in silico cloning in the pET28a(+) vector. CONCLUSION: The computational analysis of the construct showed acceptable results, however, the suggested vaccine needs to be experimentally verified in laboratory to ensure its safety and immunogenicity.


Asunto(s)
COVID-19 , Streptococcus pneumoniae , Niño , Humanos , Preescolar , Anciano , Simulación del Acoplamiento Molecular , Escherichia coli , Receptor Toll-Like 4 , Epítopos de Linfocito T/química , Vacunas de Subunidad/química , Vacunas de Subunidad/genética , Epítopos de Linfocito B , Biología Computacional/métodos
3.
BMC Microbiol ; 23(1): 332, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946110

RESUMEN

BACKGROUND: The increasing growth of microbial resistance threatens the health of human societies. Therefore, the discovery and design of new antibiotics seem necessary. Today, antimicrobial peptides (AMPs) are receiving attention due to their unique properties. In our previous studies, exclusive antifungal effects of AurH1, which is a truncated and modified form of Aurein1.2, were synthesized. In this study, AurH1 antifungal peptide was synthesized into acylated (Ac-AurH1) and amidated (AurH1-NH2) derivatives, and their antifungal activity, cytotoxicity, anticancer activity, hemolytic effects were investigated. Finally, the time- of killing, the action mechanism of amidated and acylated peptides, and the effects of salts and human serum on their antimicrobial potency were determined. All the results obtained about these peptides were compared with the AurH1 without chemical modifications. RESULTS: The results showed that amidation at the C-terminal of AurH1 compared to acylation at the N-terminal of it can improve the antifungal properties and cytotoxicity of AurH1. The results showed that AurH1 amidation can maintain the antifungal activity of this peptide in the culture medium containing specific dilutions of human serum compared to the intact AurH1. Also, the amidation of the C-terminal of AurH1 could not affect the mechanism of action and its time -of killing. CONCLUSION: As a result, the amidation of the C-terminal of the AurH1 is a suitable strategy to improve its antifungal properties and cytotoxicity. This modification can enhance its properties for animal studies.


Asunto(s)
Antiinfecciosos , Antifúngicos , Animales , Humanos , Antifúngicos/farmacología , Péptidos/farmacología , Péptidos/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
4.
Amino Acids ; 55(11): 1601-1619, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37803248

RESUMEN

Enzyme therapy for celiac disease (CeD), which digests gliadin into non-immunogenic and non-toxic peptides, can be an appropriate treatment option for CeD. Here, we have investigated the effectiveness of bromelain and ficin on gliadin digestion using in vitro, such as SDS-PAGE, HPLC, and circular dichroism (CD). Furthermore, the cytotoxicity of gliadin and 19-mer peptide before and after digestion with these enzymes was evaluated using the MTT assay in the Caco-2 cell line. Finally, we examined the effect of these treatments along with Larazotide Acetate on the expression of genes involved in cell-tight junctions, such as Occludin, Claudin 3, tight junction protein-1, and Zonulin in the Caco-2 cell line. Our study demonstrated bromelain and ficin digestion effects on the commercial and wheat-extracted gliadin by SDS-PAGE, HPLC, and CD. Also, the cytotoxicity results on Caco-2 showed that toxicity of the gliadin and synthetic 19-mer peptide was decreased by adding bromelain and ficin. Furthermore, the proteolytic effects of bromelain and ficin on gliadin indicated the expression of genes involved in cell-tight junctions was improved. This study confirms that bromelain and ficin mixture could be effective in improving the symptoms of CeD.


Asunto(s)
Enfermedad Celíaca , Gliadina , Humanos , Células CACO-2 , Gliadina/farmacología , Gliadina/metabolismo , Uniones Estrechas , Ficaína , Bromelaínas/farmacología , Péptidos/farmacología
5.
J Transl Med ; 20(1): 389, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-36059030

RESUMEN

BACKGROUND: Streptococcus pneumoniae is the leading reason for invasive diseases including pneumonia and meningitis, and also secondary infections following viral respiratory diseases such as flu and COVID-19. Currently, serotype-dependent vaccines, which have several insufficiency and limitations, are the only way to prevent pneumococcal infections. Hence, it is plain to need an alternative effective strategy for prevention of this organism. Protein-based vaccine involving conserved pneumococcal protein antigens with different roles in virulence could provide an eligible alternative to existing vaccines. METHODS: In this study, PspC, PhtD and PsaA antigens from pneumococcus were taken to account to predict B-cell and helper T-cell epitopes, and epitope-rich regions were chosen to build the construct. To enhance the immunogenicity of the epitope-based vaccine, a truncated N-terminal fragment of pneumococcal endopeptidase O (PepO) was used as a potential TLR2/4 agonist which was identified by molecular docking studies. The ultimate construct was consisted of the chosen epitope-rich regions, along with the adjuvant role (truncated N-PepO) and suitable linkers. RESULTS: The epitope-based vaccine was assessed as regards physicochemical properties, allergenicity, antigenicity, and toxicity. The 3D structure of the engineered construct was modeled, refined, and validated. Molecular docking and simulation of molecular dynamics (MD) indicated the proper and stable interactions between the vaccine and TLR2/4 throughout the simulation periods. CONCLUSIONS: For the first time this work presents a novel vaccine consisting of epitopes of PspC, PhtD, and PsaA antigens which is adjuvanted with a new truncated domain of PepO. The computational outcomes revealed that the suggested vaccine could be deemed an efficient therapeutic vaccine for S. pneumoniae; nevertheless, in vitro and in vivo examinations should be performed to prove the potency of the candidate vaccine.


Asunto(s)
COVID-19 , Streptococcus pneumoniae , Adyuvantes Inmunológicos , Antígenos Bacterianos , Proteínas Bacterianas , Biología Computacional , Epítopos de Linfocito B/química , Epítopos de Linfocito T/química , Humanos , Metaloendopeptidasas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptor Toll-Like 2 , Vacunas de Subunidad/química
6.
Microb Pathog ; 173(Pt A): 105866, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36336133

RESUMEN

BACKGROUND: With the emergence of drug-resistant fungi and the increased population prone to fungal infections, more effective antifungal drugs are needed. Aurein 1.2 is a potent antimicrobial peptide. Here, we designed a novel derivative of Aurein 1.2, called Aurein N3, which is a modified form of Aurein N2 (another Aurein 1.2 derivative), in which Lys 8 residue was replaced with Leu 13, and was also modified by creating two other mutations. METHODS: Aurein N3 was designed using several algorithms and docking studies. All peptides were synthesized and some of their bio-activity indices such as antifungal properties on 11 fungi, cytotoxicity, hemolysis, and time of the killing were investigated. Electron microscopy, lived/dead staining, and ergosterol binding assay were performed to study their mechanism of action. RESULTS: In comparison to Aurein 1.2 and N2, the docking studies showed that Aurein N3 has reduced binding energy toward ergosterol. The antifungal assessments showed that both Aurein N2 and N3 had strong activity against many fungi. Aurein N3 had lower cytotoxicity and higher binding capability to ergosterol. The hemolytic activity of Aurein N2 and N3 was less than parental Aurein 1.2. All peptides were able to attack the cell wall/membrane and enter the fungi cells. CONCLUSION: Here we introduced a novel derivative of Aurein 1.2 which has lower cytotoxicity, higher ergosterol-binding capability, and comparable antifungal activity compared to the original peptides. It can bind to ergosterol and can also attack the cell wall/membrane of fungi, although more studies are required to find its accurate mechanism of action.


Asunto(s)
Antifúngicos , Péptidos Catiónicos Antimicrobianos , Antifúngicos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Membrana Celular , Ergosterol/metabolismo , Hongos/metabolismo , Hemólisis , Pruebas de Sensibilidad Microbiana
7.
Biochem Biophys Res Commun ; 549: 157-163, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33676184

RESUMEN

The use of natural antimicrobial peptides (AMPs) is limited. Modifications of peptides by in silico predictions and computational methods can lead to more accurate designs and reducing their high synthesis costs, instability, and cytotoxicity. In this study, the antifungal properties of CecropinA-Magenin2 (CE-MA) hybrid peptide and its truncated derivatives were evaluated. Eleven C-terminal-truncated derivatives were designed and three of them with 10, 8 and 6 residues namely CMt1, CMt2 and CMt3 were selected through an initial screening based on the prediction of antimicrobial and antifungal activities, toxicity and physicochemical properties. These derivatives and the parental CE-MA peptide were synthesized. Then, based on molecular docking studies, antimicrobial tests and cytotoxicity assays, CMt1 peptide was selected for further studies such as time of killing, combinatorial effects with other drugs and the mechanism of action. The results showed that CE-MA is a weak antifungal peptide but its truncated derivative, CMt1 showed a strong antifungal activity with less toxicity. The results of the ergosterol assay, confocal microscopy and FE-SEM studies indicated that invasion to cell wall and membrane components were the main antifungal mechanisms of CMt1 peptide. Altogether, here we introduce a new truncated peptide with a strong antifungal activity with less toxicity which can be a good candidate for further in vivo and clinical studies to be used as an antifungal drug.


Asunto(s)
Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Secuencia de Aminoácidos , Anfotericina B/farmacología , Péptidos Catiónicos Antimicrobianos/química , Candida albicans/efectos de los fármacos , Candida albicans/ultraestructura , Línea Celular , Hemólisis/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Coloración y Etiquetado , Factores de Tiempo
8.
J Fluoresc ; 31(1): 279-288, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33387213

RESUMEN

Chemotherapy using drug delivery systems (DDS) can target cancer cells selectively and without affecting normal cells. In this paper, NL2 peptide as a tumor targeted peptide was bonded on the surface of poly 3,4-Dihydroxy-L-phenylalanine (Poly L-DOPA) graphene quantum dots (GQD), which was imprinted by Doxorubicin (DOX). The synthesized nanocomposite was characterized by Fourier-transform infrared spectroscopy (FTIR) and particle size was determined by dynamic light scattering (DLS) and Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). DOX release from synthesized nano-composite was investigated spectrophotometrically. Also, the toxicity and selectivity of NL2-GQD-NC on SK-BR-3 cell line were evaluated. FTIR and DLS experiment confirm the successful synthesis of Poly L-DOPA coated graphene quantum dots and their uniform particles. In vitro studies have shown that NL2-GQD-NC attached more to SK-BR-3 cells than NL2-free nanocomposites (GQD-NC). After attaching the cells could be imaged due to the presence of GQD particles and DOX release was accomplished in the tumor cells.


Asunto(s)
Portadores de Fármacos/química , Grafito/química , Levodopa/química , Péptidos/química , Puntos Cuánticos/química , Línea Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacología , Humanos
9.
Cell Biol Int ; 43(8): 852-862, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31033094

RESUMEN

The transcription factor T-cell factor 3 (TCF3), one component of the Wnt pathway, is known as a cell-intrinsic inhibitor of many pluripotency genes in embryonic stem cells (ESCs) that influences the balance between pluripotency and differentiation. In this study, the effects of inhibition of TCF3 transcription factor on the stemness of mouse ESCs (mESCs) were investigated using the decoy oligodeoxynucleotides (ODNs) strategy. The TCF3 decoy and its scramble ODNs were designed and synthesized. The interaction specificity of the TCF3 decoy with the TCF3 transcription factor was evaluated by the electrophoretic mobility shift assay. Subcellular localization was carried out using fluorescence and confocal microscopy. Self-renewal and pluripotency of mESCs were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), cell cycle and apoptosis, alkaline phosphatase (ALP), embryoid body (EB) formation, and real-time assays. All experiments were performed in triplicate. The results showed that knockdown of TCF3 by decoy ODNs transfection in mESCs led to an increase in the cell proliferation, ALP enzyme activity, and master regulatory stemness genes and a decrease in the number and diameter of EBs. These results supported TCF3 as a potential target to maintain the pluripotency and self-renewal capacity of mESCs. Knockdown of the TCF3 transcription factor using decoy ODNs can be a promising method to maintain the stemness of stem cells in regenerative medicine and cell therapy researches.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Oligodesoxirribonucleótidos/farmacología , Medicina Regenerativa , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Ratones , Células Madre Embrionarias de Ratones/citología , Oligodesoxirribonucleótidos/genética , Vía de Señalización Wnt/genética
10.
Cell Biol Int ; 43(12): 1379-1392, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30811084

RESUMEN

The mechanical property of bone tissue scaffolds is one of the most important aspects in bone tissue engineering that has remained problematic. In our previous study, we fabricated a three-dimensional scaffold from nano-hydroxyapatite/gelatin (nHA/Gel) and investigated its efficiency in promoting bone regeneration both in vitro and in vivo. In the present study, the effect of adding silicon carbide (SiC) on the mechanical and biological behaviors of the nHA/Gel/SiC and bone regeneration in vivo were determined. nHA and SiC were synthesized and characterized by the X-ray diffraction pattern and transmission electron microscope image. Layer solvent casting, freeze drying, and lamination techniques were applied to prepare these scaffolds. Then, the biocompatibility and cell adhesion behavior of the synthesized nHA/Gel/SiC scaffolds were investigated. For in vivo studies, rats were categorized into three groups: blank defect, blank scaffold, and rat bone marrow mesenchymal stem cells (rBM-MSCs)/scaffold. After 1, 4, and 12 weeks post-injury, the rats were sacrificed and the calvaria were harvested. Sections with a thickness of 5 µm thickness were prepared and stained with hematoxylin-eosin and Masson's Trichrome, and immunohistochemistry was performed. Our results showed that SiC effectively increased the mechanical properties of the nHA/Gel/SiC scaffold. No significant differences were observed in biocompatibility, cell adhesion, and cytotoxicity of the nHA/Gel/SiC in comparison with the nHA/Gel nanocomposite. Based on histological and immunohistochemical studies, both osteogenesis and collagenization were significantly higher in the rBM-MSCs/scaffold group, quantitatively and qualitatively. The present study strongly suggests the potential of SiC as an alternative strategy to improve the mechanical and biological properties of bone tissue engineering scaffolds, and shows that the pre-seeded nHA/Gel/SiC scaffold with rBM-MSCs improves osteogenesis in the engineered bone implant.

11.
J Pept Sci ; 25(7): e3175, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31264322

RESUMEN

Due to the increasing incidence of fungal opportunistic infections and emergence of antibiotic-resistant fungal strains, antimicrobial peptides (AMPs) are considered as ideal candidates for antifungal compounds. In silico methods can reduce the limitations of natural AMPs such as toxicity and instability and improve their antimicrobial properties and selectivity. In this study, we designed AurH1, a new truncated peptide, based on the six-amino acid sequence of Aurein1.2. Further, the antimicrobial activities and toxicity effects of AurH1 on human skin fibroblast cells and red blood cells were investigated. Finally, field emission scanning electron microscopy (FE-SEM) and flow cytometry were performed in order to study the mechanism of action of AurH1. The results indicated that AurH1 had only antifungal activity (at a minimal inhibitory concentration (MIC) of 7.3-125 µg/mL) without any antibacterial effects on the selected bacteria, while Aurein1.2 had both antifungal and antibacterial activities as positive control. Furthermore, AurH1 did not show any toxicity on Hu02 cells and human red blood cells at its MIC range. In conclusion, it became clear that AurH1 is a selective peptide against fungi with no toxic effects on the selected bacteria and human cells.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Aspergillus/efectos de los fármacos , Candida/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Microsporum/efectos de los fármacos , Penicillium/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Trichophyton/efectos de los fármacos
12.
Drug Dev Res ; 80(1): 162-170, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30593676

RESUMEN

Considering the worldwide increasing prevalence of resistance to traditional antibiotics, it is necessary to find new antibiotics to deal with this issue. Recently, antimicrobial peptides (AMPs) have been proposed as new antimicrobial agents. Aureins are a family of AMPs that are isolated from Green and Golden Bell Frogs. These peptides have a favorable antibacterial activity against Gram-positive bacteria. We designed two peptides derived from natural Aurein enjoying alignment-based design method. After synthesis of the peptides, their secondary structure was checked by circular dichroism. Consequently, the antibacterial effects of these peptides were investigated by determining the minimum inhibitory concentration (MIC) and bactericidal concentration. Eventually, the toxicity of these peptides was determined by MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay on normal human skin cells (Hu02 cell line). Natural Aurein1.2 was used as a natural control to compare the properties in all stages. The results indicated that these new peptides had medium-upward antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis (MIC of 8-64 µg/mL) and weak bactericidal activity against Staphylococcus aureus (MIC of 128-256 µg/mL). Also, MTT assays results showed that AureinN2 is less toxic than AureinN1 and Aurein1.2. Toxicity of AureinN2 for Hu02 cell lines was between 20 and 40% at the concentration of 8-500 µg/mL. In this study, we were able to improve antimicrobial activity of two synthetic derivatives of the Aurein family against Gram-negative bacteria by using machine-learning algorithm and other in silico methods.


Asunto(s)
Antiinfecciosos/toxicidad , Péptidos Catiónicos Antimicrobianos/toxicidad , Citotoxinas/toxicidad , Diseño de Fármacos , Bacterias Gramnegativas/efectos de los fármacos , Secuencia de Aminoácidos , Antiinfecciosos/síntesis química , Péptidos Catiónicos Antimicrobianos/síntesis química , Línea Celular , Citotoxinas/síntesis química , Evaluación Preclínica de Medicamentos/métodos , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Bacterias Gramnegativas/fisiología , Humanos , Pruebas de Sensibilidad Microbiana/métodos
13.
Sci Rep ; 14(1): 13497, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866982

RESUMEN

Antimicrobial peptides (AMPs) have sparked significant interest as potential anti-cancer agents, thereby becoming a focal point in pursuing novel cancer-fighting strategies. These peptides possess distinctive properties, underscoring the importance of developing more potent and selectively targeted versions with diverse mechanisms of action against human cancer cells. Such advancements would offer notable advantages compared to existing cancer therapies. This research aimed to examine the toxicity and selectivity of the nrCap18 peptide in both cancer and normal cell lines. Furthermore, the rate of cellular death was assessed using apoptosis and acridine orange/ethidium bromide (AO/EB) double staining at three distinct incubation times. Additionally, the impact of this peptide on the cancer cell cycle and migration was evaluated, and ultimately, the expression of cyclin-dependent kinase 4/6 (CDK4/6) genes was investigated. The results obtained from the study demonstrated significant toxicity and selectivity in cancer cells compared to normal cells. Moreover, a strong progressive increase in cell death was observed over time. Furthermore, the peptide exhibited the ability to halt the progression of cancer cells in the G1 phase of the cell cycle and impede their migration by suppressing the expression of CDK4/6 genes.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Catelicidinas , Quinasa 4 Dependiente de la Ciclina , Humanos , Animales , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Apoptosis/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Femenino , Conejos , Movimiento Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Quinasa 6 Dependiente de la Ciclina/metabolismo , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Péptidos/farmacología , Péptidos/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
14.
Clin Transl Oncol ; 26(1): 231-238, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37310573

RESUMEN

OBJECTIVES: Among the most promising antibody formats in terms of inhibiting carcinogenesis are single-stranded variable fragments, whose targeted binding to the Fzd7 receptor has been proven effective at suppressing tumorigenesis. In this study, we investigated the effectiveness of an anti-Fzd7 antibody fragment against both tumor growth and metastasis of breast cancer cells. METHODS: To develop anti-Fzd7 antibodies, bioinformatics approaches were used and the antibodies were expressed recombinantly in E. coli BL21 (DE3). The expression of anti-Fzd7 fragments was verified by Western blotting. Analysis of the antibody's binding capacity to Fzd7 was conducted by flow cytometry. Cell death and apoptosis were assessed by MTT and Annexin V/PI assays. The transwell migration and invasion assays, as well as the scratch method, were used to evaluate cell motility and invasiveness. RESULTS: The anti-Fzd7 antibody was expressed successfully as a single band of 31 kDa. It could bind to 21.5% of MDA-MB-231 cells, as opposed to only 0.54% of SKBR-3 cells as negative control. According to MTT assay, induced apoptosis was 73.7% in MDA-MB-231 cells, compared with 29.5% in SKBR-3 cells. Also, the antibody exerted a significant inhibitory effect of 76% and 58% on migration and invasion of MDA-MB-231 cells, respectively. CONCLUSION: The recombinantly developed anti-Fzd7 scFv of this study could exhibit significant antiproliferative and antimigratory properties, along with a high apoptosis-inducing potential, making it suitable for the immunotherapy of triple negative breast cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/patología , Escherichia coli , Western Blotting , Apoptosis , Proliferación Celular , Movimiento Celular
15.
J Biomol Struct Dyn ; 42(4): 2094-2110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37129119

RESUMEN

Monkeypox virus is a member of the Poxviridae family, which causes monkeypox zoonotic disease. Since July 2022, the prevention of monkeypox have become more considerable due to the new outbreak, making it a global concern. Therefore, we used an in silico-based method, including immunoinformatics, bioinformatics, molecular docking, and gene cloning approaches to design a novel multiepitope vaccine against monkeypox. Three immunogenic envelope proteins of monkeypox virus, including G10R, E8L, and A30L, were selected to predict appropriate immune system stimulator epitopes. The A30L is common between smallpox and monkeypox virus, so the proposed vaccine may be effective against smallpox too. There is no evidence of allergenicity and toxicity of the vaccine epitopes. To boost the immunogenicity of the designed vaccine, we used the helper epitope of PADRE and RS01as adjuvants. Furthermore, some linkers are used to link epitopes and adjuvants together. The physicochemical futures of the designed vaccine were assessed. The tertiary structure of the vaccine was modeled and then refined to improve its structure and physicochemical properties. To analyze the vaccine construct and TLR4 complex affinity, they were docked to gather. Besides, the vaccine was cloned into E.coli. pET-21b(+) plasmid to reveal that it can be expressed and stimulate the immune system. Immune stimulation evaluation showed that the candidate vaccine could induce the production of IgM, IgG1, and IgG2 antibodies. Overall, we suggested an effective vaccine candidate against monkeypox. However, Future studies and clinical trials should be done to ensure the efficacy and safety of this vaccine.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Mpox , Viruela , Vacunas , Humanos , Inmunoinformática , Receptor Toll-Like 4 , Simulación del Acoplamiento Molecular , Biología Computacional , Epítopos , Escherichia coli , Epítopos de Linfocito T , Epítopos de Linfocito B , Vacunas de Subunidad
16.
Int J Biol Macromol ; 258(Pt 2): 128924, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38143051

RESUMEN

Pneumococcus is the top cause of diseases such as pneumonia/meningitis, and of secondary infections after viral respiratory diseases like COVID-19/flu. Pneumococcal protein-based vaccines consisting of proteins with various functions in virulence might provide a qualified alternative for present vaccines. In this project, PspC, PsaA, and PhtD proteins were considered to anticipate B/T-cell epitopes using immunoinformatics to develop 4 multi-peptide constructs (C, A, and D individual constructs, and a fusion construct CAD). We tested whether vaccination with CAD is able to elicit more efficient protective responses against infection than vaccination with the individual constructs or combination of C + A + D. Based on the in silico results, the constructs were predicted to be antigenic, soluble, non-toxic, and stable, and also be able to provoke humoral/cellular immune reactions. When mice were immunized with the fusion protein, significantly higher levels of IgG and cytokines were induced in serum. The IgG in the fusion group had an effective bioactivity for pneumococcus clearance utilizing the complement pathway. The mice immunized with fusion protein were the most protected from challenge. This report for the first time presents a novel multi-peptide vaccine composed of immunodominant peptides of PspC, PsaA, and PhtD. In general, the experimental results supported the immunoinformatics predictions.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Animales , Ratones , Proteínas Bacterianas , Vacunas de Subunidades Proteicas , Péptidos , Epítopos de Linfocito B , Inmunoglobulina G , Anticuerpos Antibacterianos
17.
Biochem Biophys Rep ; 38: 101701, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38601750

RESUMEN

This work aimed to purify the proteins that cause blood coagulation in the venom of the Iranian Echis carinatus snake species in a comprehensive manner. Gel filtration chromatography (GFC), Ion exchange chromatography (IEC), and Size Exclusion High-Performance Liquid Chromatography (SEC-HPLC) were utilized in the purification of the coagulation factors. The prothrombin clotting time (PRCT) and SDS-PAGE electrophoresis were performed to confirm the coagulative fractions. The fraction with the shortest coagulation time was selected. The components of this designated fraction were identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF) following thorough purification. Circular dichroism (CD) was employed to determine the second structure of the coagulation factor. The crude venom (CV) was analyzed and had a total protein concentration of 97%. Furthermore, the PRCT of the crude venom solution at a concentration of 1 mg/ml was determined to be 24.19 ± 1.05 s. The dosage administered was found to be a factor in the venom's capacity to induce hemolysis. According to CD analysis, the protein under investigation had a helical structure of 16.7%, a beta structure of 41%, and a turn structure of 9.8%. CHNS proved that the purified coagulant protein had a Carbon content of 77.82%, 5.66% Hydrogen, 3.19% Nitrogen, and 0.49% Sulphur. In the present investigation, a particular type of snake venom metalloproteinase (SVMP) has undergone the process of purification and characterization and has been designated as EC-124. This purified fraction shows significant efficacy as a procoagulant. Our findings have shown that this compound has a function similar to factor X and most likely it can cause blood coagulation by activating factor II (FII).

18.
Int J Pept Res Ther ; 29(1): 5, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36466430

RESUMEN

In spite of existing cases of severe viral infections with a high mortality rate, there are not enough antiviral drugs and vaccines available for the prevention and treatment of such diseases. In addition, the increasing reports of the emergence of viral epidemics highlight, the need for novel molecules with antiviral potential. Antimicrobial peptides (AMPs) with antiviral activity or antiviral peptides (AVPs) have turned into a research hotspot and already show tremendous potential to become pharmaceutically available antiviral medicines. AMPs, a diverse group of bioactive peptides act as a part of our first line of defense against pathogen inactivation. Although most of the currently reported AMPs are either antibacterial or antifungal peptides, the number of antiviral peptides is gradually increasing. Some of the AMPs that are shown as effective antivirals have been deployed against viruses such as influenza A virus, severe acute respiratory syndrome coronavirus (SARS-CoV), HIV, HSV, West Nile Virus (WNV), and other viruses. This review offers an overview of AVPs that have been approved within the past few years and will set out a few of the most essential patents and their usage within the context mentioned above during 2000-2020. Moreover, the present study will explain some of the progress in antiviral drugs based on peptides and peptide-related antivirals.

19.
Parasite Epidemiol Control ; 21: e00299, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37091061

RESUMEN

Co-infection of COVID-19 with other diseases increases the challenges related to its treatment management. COVID-19 co-infection with parasites is studied with low frequency. Here, we systematically reviewed the cases of parasitic disease co-infection with COVID-19. All articles on COVID-19 co-infected with parasites (protozoa, helminths, and ectoparasites), were screened through defined inclusion/exclusion criteria. Of 2190 records, 35 studies remained for data extraction. The majority of studies were about COVID-19 co-infected with malaria, followed by strongyloidiasis, amoebiasis, chagas, filariasis, giardiasis, leishmaniasis, lophomoniasis, myiasis, and toxoplasmosis. No or low manifestation differences were reported between the co-infected cases and naïve COVID-19 or naïve parasitic disease. Although there was a relatively low number of reports on parasitic diseases-COVID-19 co-infection, COVID-19 and some parasitic diseases have overlapping symptoms and also COVID-19 conditions and treatment regimens may cause some parasites re-emergence, relapse, or re-activation. Therefore, more attention should be paid to the on-time diagnosis of COVID-19 and the co-infected parasites.

20.
Drug Deliv Transl Res ; 13(10): 2487-2502, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36988874

RESUMEN

In a significant percentage of breast cancers, increased expression of the HER2 receptor is seen and is associated with the spread and worsening of the disease. This research aims to investigate the effect of miR-559 (which targets HER2 mRNA) on SKBR3 breast cancer cells and the possibility of their effective delivery with polymeric nanoparticles and tumor-targeting peptides. L-DOPA monomers were polymerized on the surface of silica nanoparticles in the presence of miR-559 (as a molecular template for molecular imprinting) then an anti-HER2 peptide coupled to the surface of these polymeric nanocomposites (miR-NC-NL2), and the effects of this construct against a HER2-positive breast cancer cells (SKBR3 cells) investigated in vitro conditions. The results showed that miR-NC-NL2 is selective for HER2-positive cells and delivers the miR-559 to them in a targeted manner. miR-NC-NL2 decreased the proliferation of SKBR3 cells and reduced the expression and production of HER2 protein in these cells. Effective and targeted delivery of miR-559 to HER2-positive cancer cells by the miR-NC-NL2 promises the therapeutic potential of this nascent structure based on its inhibitory effect on cancer growth and progression. Of course, animal experiments require a better understanding of this structure's anti-tumor effects.


Asunto(s)
MicroARNs , Impresión Molecular , Neoplasias , Animales , Levodopa/farmacología , Dióxido de Silicio , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proliferación Celular , Línea Celular Tumoral , Fragmentos de Péptidos/farmacología , MicroARNs/genética , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA