Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Transl Immunology ; 13(5): e1509, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737448

RESUMEN

Objectives: Seasonal influenza viruses cause roughly 650 000 deaths annually despite available vaccines. CD8+ T cells typically recognise influenza-derived peptides from internal structural and non-structural influenza proteins and are an attractive avenue for future vaccine design as they could reduce the severity of disease following infection with diverse influenza strains. CD8+ T cells recognise peptides presented by the highly polymorphic Human Leukocyte Antigens class I molecules (HLA-I). Each HLA-I variant has distinct peptide binding preferences, representing a significant obstacle for designing vaccines that elicit CD8+ T cell responses across broad populations. Consequently, the rational design of a CD8+ T cell-mediated vaccine would require the identification of highly immunogenic peptides restricted to a range of different HLA molecules. Methods: Here, we assessed the immunogenicity of six recently published novel influenza-derived peptides identified by mass-spectrometry and predicted to bind to the prevalent HLA-B*18:01 molecule. Results: Using CD8+ T cell activation assays and protein biochemistry, we showed that 3/6 of the novel peptides were immunogenic in several HLA-B*18:01+ individuals and confirmed their HLA-B*18:01 restriction. We subsequently compared CD8+ T cell responses towards the previously identified highly immunogenic HLA-B*18:01-restricted NP219 peptide. Using X-ray crystallography, we solved the first crystal structures of HLA-B*18:01 presenting immunogenic influenza-derived peptides. Finally, we dissected the first TCR repertoires specific for HLA-B*18:01 restricted pathogen-derived peptides, identifying private and restricted repertoires against each of the four peptides. Conclusion: Overall the characterisation of these novel immunogenic peptides provides additional HLA-B*18:01-restricted vaccine targets derived from the Matrix protein 1 and potentially the non-structural protein and the RNA polymerase catalytic subunit of influenza viruses.

2.
Curr Res Struct Biol ; 7: 100148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742159

RESUMEN

CD8+ T cells are crucial for viral elimination and recovery from viral infection. Nonetheless, the current understanding of the T cell response to SARS-CoV-2 at the antigen level remains limited. The Spike protein is an external structural protein that is prone to mutations, threatening the efficacy of current vaccines. Therefore, we have characterised the immune response towards the immunogenic Spike-derived peptide (S976-984, VLNDILSRL), restricted to the HLA-A*02:01 molecule, which is mutated in both Alpha (S982A) and Omicron BA.1 (L981F) variants of concern. We determined that the mutation in the Alpha variant (S982A) impacted both the stability and conformation of the peptide, bound to HLA-A*02:01, in comparison to the original S976-984. We identified a longer and overlapping immunogenic peptide (S975-984, SVLNDILSRL) that could be presented by HLA-A*02:01, HLA-A*11:01 and HLA-B*13:01 allomorphs. We showed that S975-specific CD8+ T cells were weakly cross-reactive to the mutant peptides despite their similar conformations when presented by HLA-A*11:01. Altogether, our results show that the impact of SARS-CoV-2 mutations on peptide presentation is HLA allomorph-specific, and that post vaccination there are T cells able to react and cross-react towards the variant of concern peptides.

3.
Nat Commun ; 15(1): 7206, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174515

RESUMEN

Apical membrane antigen-1 (AMA1) is a conserved malarial vaccine candidate essential for the formation of tight junctions with the rhoptry neck protein (RON) complex, enabling Plasmodium parasites to invade human erythrocytes, hepatocytes, and mosquito salivary glands. Despite its critical role, extensive surface polymorphisms in AMA1 have led to strain-specific protection, limiting the success of AMA1-based interventions beyond initial clinical trials. Here, we identify an i-body, a humanised single-domain antibody-like molecule that recognises a conserved pan-species conformational epitope in AMA1 with low nanomolar affinity and inhibits the binding of the RON2 ligand to AMA1. Structural characterisation indicates that the WD34 i-body epitope spans the centre of the conserved hydrophobic cleft in AMA1, where interacting residues are highly conserved among all Plasmodium species. Furthermore, we show that WD34 inhibits merozoite invasion of erythrocytes by multiple Plasmodium species and hepatocyte invasion by P. falciparum sporozoites. Despite a short half-life in mouse serum, we demonstrate that WD34 transiently suppressed P. berghei infections in female BALB/c mice. Our work describes the first pan-species AMA1 biologic with inhibitory activity against multiple life-cycle stages of Plasmodium. With improved pharmacokinetic characteristics, WD34 could be a potential immunotherapy against multiple species of Plasmodium.


Asunto(s)
Antígenos de Protozoos , Eritrocitos , Hígado , Proteínas de la Membrana , Ratones Endogámicos BALB C , Proteínas Protozoarias , Animales , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Femenino , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Humanos , Eritrocitos/parasitología , Eritrocitos/inmunología , Hígado/parasitología , Hígado/inmunología , Hígado/metabolismo , Vacunas contra la Malaria/inmunología , Malaria/inmunología , Malaria/parasitología , Malaria/prevención & control , Reacciones Cruzadas/inmunología , Plasmodium falciparum/inmunología , Plasmodium berghei/inmunología , Epítopos/inmunología , Hepatocitos/parasitología , Hepatocitos/inmunología , Hepatocitos/metabolismo , Plasmodium/inmunología , Merozoítos/inmunología , Merozoítos/metabolismo
4.
FEBS J ; 290(4): 974-987, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36029163

RESUMEN

Scribble (Scrib) is a highly conserved cell polarity regulator that harbours potent tumour suppressor activity and plays an important role in cell migration. Dysregulation of polarity is associated with poor prognosis during viral infections. Human T-cell lymphotrophic virus-1 (HTLV-1) encodes for the oncogenic Tax1 protein, a modulator of the transcription of viral and human proteins that can cause cell cycle dysregulation as well as a loss of genomic integrity. Previous studies established that Scribble interacts with Tax1 via its C-terminal PDZ-binding motif (PBM), leading to aggregation of polarity regulators and subsequent perturbation of host cell adhesion, proliferation, and signalling. Using isothermal titration calorimetry, we now show that all four PDZ domains of Scribble bind to Tax1 PBM. We then determined crystal structures of Scribble PDZ1, PDZ2 and PDZ3 domains bound to Tax1 PBM. Our findings establish a structural basis for Tax1-mediated subversion of Scribble-mediated cell polarity signalling and provide the platform for mechanistic studies to examine Tax1 induced mislocalization of Scribble and the associated changes in cellular architecture and subsequent tumorigenesis.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Dominios PDZ , Humanos , Virus Linfotrópico T Tipo 1 Humano/genética , Linfocitos T , Virus Oncogénicos , Unión Proteica
5.
Commun Biol ; 6(1): 702, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430142

RESUMEN

Scribble (Scrib) is a multidomain polarity protein and member of the leucine-rich repeat and PDZ domain (LAP) protein family. A loss of Scrib expression is associated with disturbed apical-basal polarity and tumor formation. The tumor-suppressive activity of Scrib correlates with its membrane localization. Despite the identification of numerous Scrib-interacting proteins, the mechanisms regulating its membrane recruitment are not fully understood. Here, we identify the cell adhesion receptor TMIGD1 as a membrane anchor of Scrib. TMIGD1 directly interacts with Scrib through a PDZ domain-mediated interaction and recruits Scrib to the lateral membrane domain in epithelial cells. We characterize the association of TMIGD1 with each Scrib PDZ domain and describe the crystal structure of the TMIGD1 C-terminal peptide complexed with PDZ domain 1 of Scrib. Our findings describe a mechanism of Scrib membrane localization and contribute to the understanding of the tumor-suppressive activity of Scrib.


Asunto(s)
Células Epiteliales , Complejo GPIb-IX de Glicoproteína Plaquetaria , Membranas , Adhesión Celular
6.
Methods Mol Biol ; 2256: 125-135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34014519

RESUMEN

The determination of high-resolution crystal structures of cell polarity regulatory proteins bound to their functional interactors has proven to be invaluable for deciphering the underlying molecular mechanisms. Here we describe methods to identify suitable complexes of cell polarity protein domains bound to interacting ligands with subsequent preparation of such complexes for X-ray crystallographic analysis.


Asunto(s)
Polaridad Celular , Cristalografía por Rayos X/métodos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Dominios PDZ , Fragmentos de Péptidos/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Sitios de Unión , Humanos , Ligandos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA