Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(2): e23415, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38243682

RESUMEN

Emerging evidence suggests that stem cell-derived extracellular vesicles (EVs) may induce pro-regenerative effects in ischemic tissues by delivering bioactive molecules, including microRNAs. Recent studies have also shown pro-regenerative benefits of EVs derived from induced pluripotent stem (iPS) cells. However, the underlying mechanisms of EV benefits and the role of their transferred regulatory molecules remain incompletely understood. Accordingly, we investigated the effects of human iPS-derived EVs (iPS-EVs) enriched in proangiogenic miR-126 (iPS-miR-126-EVs) on functional properties of human endothelial cells (ECs) in vitro. We also examined the outcomes following EV injection in a murine model of limb ischemia in vivo. EVs were isolated from conditioned media from cultures of unmodified and genetically modified human iPS cells overexpressing miR-126. The iPS-miR-126-EVs were enriched in miR-126 when compared with control iPS-EVs and effectively transferred miR-126 along with other miRNAs to recipient ECs improving their functional properties essential for ischemic tissue repair, including proliferation, metabolic activity, cell survival, migration, and angiogenic potential. Injection of iPS-miR-126-EVs in vivo in a murine model of acute limb ischemia promoted angiogenesis, increased perfusion, and enhanced functional recovery. These observations corresponded with elevated expression of genes for several proangiogenic factors in ischemic tissues following iPS-miR-126-EV transplantation. These results indicate that innate pro-regenerative properties of iPS-EVs may be further enhanced by altering their molecular composition via controlled genetic modifications. Such iPS-EVs overexpressing selected microRNAs, including miR-126, may represent a novel acellular tool for therapy of ischemic tissues in vivo.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , MicroARNs , Humanos , Ratones , Animales , Células Madre Pluripotentes Inducidas/metabolismo , Células Endoteliales/metabolismo , Modelos Animales de Enfermedad , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Isquemia/terapia , Isquemia/metabolismo
2.
Cell Commun Signal ; 22(1): 356, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982464

RESUMEN

BACKGROUND: Stem cell-derived extracellular vesicles (EVs) are an emerging class of therapeutics with excellent biocompatibility, bioactivity and pro-regenerative capacity. One of the potential targets for EV-based medicines are cardiovascular diseases (CVD). In this work we used EVs derived from human induced pluripotent stem cells (hiPSCs; hiPS-EVs) cultured under different oxygen concentrations (21, 5 and 3% O2) to dissect the molecular mechanisms responsible for cardioprotection. METHODS: EVs were isolated by ultrafiltration combined with size exclusion chromatography (UF + SEC), followed by characterization by nanoparticle tracking analysis, atomic force microscopy (AFM) and Western blot methods. Liquid chromatography and tandem mass spectrometry coupled with bioinformatic analyses were used to identify differentially enriched proteins in various oxygen conditions. We directly compared the cardioprotective effects of these EVs in an oxygen-glucose deprivation/reoxygenation (OGD/R) model of cardiomyocyte (CM) injury. Using advanced molecular biology, fluorescence microscopy, atomic force spectroscopy and bioinformatics techniques, we investigated intracellular signaling pathways involved in the regulation of cell survival, apoptosis and antioxidant response. The direct effect of EVs on NRF2-regulated signaling was evaluated in CMs following NRF2 inhibition with ML385. RESULTS: We demonstrate that hiPS-EVs derived from physiological hypoxia at 5% O2 (EV-H5) exert enhanced cytoprotective function towards damaged CMs compared to EVs derived from other tested oxygen conditions (normoxia; EV-N and hypoxia 3% O2; EV-H3). This resulted from higher phosphorylation rates of Akt kinase in the recipient cells after transfer, modulation of AMPK activity and reduced apoptosis. Furthermore, we provide direct evidence for improved calcium signaling and sustained contractility in CMs treated with EV-H5 using AFM measurements. Mechanistically, our mass spectrometry and bioinformatics analyses revealed differentially enriched proteins in EV-H5 associated with the antioxidant pathway regulated by NRF2. In this regard, EV-H5 increased the nuclear translocation of NRF2 protein and enhanced its transcription in CMs upon OGD/R. In contrast, inhibition of NRF2 with ML385 abolished the protective effect of EVs on CMs. CONCLUSIONS: In this work, we demonstrate a superior cardioprotective function of EV-H5 compared to EV-N and EV-H3. Such EVs were most effective in restoring redox balance in stressed CMs, preserving their contractile function and preventing cell death. Our data support the potential use of hiPS-EVs derived from physiological hypoxia, as cell-free therapeutics with regenerative properties for the treatment of cardiac diseases.


Asunto(s)
Antioxidantes , Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Factor 2 Relacionado con NF-E2 , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Transducción de Señal/efectos de los fármacos , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Apoptosis/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Animales
3.
BMC Med ; 21(1): 412, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904135

RESUMEN

BACKGROUND: Cardiac fibrosis is one of the top killers among fibrotic diseases and continues to be a global unaddressed health problem. The lack of effective treatment combined with the considerable socioeconomic burden highlights the urgent need for innovative therapeutic options. Here, we evaluated the anti-fibrotic properties of extracellular vesicles (EVs) derived from human induced pluripotent stem cells (hiPSCs) that were cultured under various oxygen concentrations. METHODS: EVs were isolated from three hiPSC lines cultured under normoxia (21% O2; EV-N) or reduced oxygen concentration (hypoxia): 3% O2 (EV-H3) or 5% O2 (EV-H5). The anti-fibrotic activity of EVs was tested in an in vitro model of cardiac fibrosis, followed by a detailed investigation of the underlying molecular mechanisms. Sequencing of EV miRNAs combined with bioinformatics analysis was conducted and a selected miRNA was validated using a miRNA mimic and inhibitor. Finally, EVs were tested in a mouse model of angiotensin II-induced cardiac fibrosis. RESULTS: We provide evidence that an oxygen concentration of 5% enhances the anti-fibrotic effects of hiPS-EVs. These EVs were more effective in reducing pro-fibrotic markers in activated human cardiac fibroblasts, when compared to EV-N or EV-H3. We show that EV-H5 act through the canonical TGFß/SMAD pathway, primarily via miR-302b-3p, which is the most abundant miRNA in EV-H5. Our results show that EV-H5 not only target transcripts of several profibrotic genes, including SMAD2 and TGFBR2, but also reduce the stiffness of activated fibroblasts. In a mouse model of heart fibrosis, EV-H5 outperformed EV-N in suppressing the inflammatory response in the host and by attenuating collagen deposition and reducing pro-fibrotic markers in cardiac tissue. CONCLUSIONS: In this work, we provide evidence of superior anti-fibrotic properties of EV-H5 over EV-N or EV-H3. Our study uncovers that fine regulation of oxygen concentration in the cellular environment may enhance the anti-fibrotic effects of hiPS-EVs, which has great potential to be applied for heart regeneration.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , MicroARNs , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Fibrosis , Hipoxia , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Oxígeno , Proteína Smad2/genética , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175437

RESUMEN

The airway wall remodeling observed in asthma is associated with subepithelial fibrosis and enhanced activation of human bronchial fibroblasts (HBFs) in the fibroblast to myofibroblast transition (FMT), induced mainly by transforming growth factor-ß (TGF-ß). The relationships between asthma severity, obesity, and hyperlipidemia suggest the involvement of peroxisome proliferator-activated receptors (PPARs) in the remodeling of asthmatic bronchi. In this study, we investigated the effect of PPARδ ligands (GW501516 as an agonist, and GSK0660 as an antagonist) on the FMT potential of HBFs derived from asthmatic patients cultured in vitro. This report shows, for the first time, the inhibitory effect of a PPARδ agonist on the number of myofibroblasts and the expression of myofibroblast-related markers-α-smooth muscle actin, collagen 1, tenascin C, and connexin 43-in asthma-related TGF-ß-treated HBF populations. We suggest that actin cytoskeleton reorganization and Smad2 transcriptional activity altered by GW501516 lead to the attenuation of the FMT in HBF populations derived from asthmatics. In conclusion, our data demonstrate that a PPARδ agonist stimulates antifibrotic effects in an in vitro model of bronchial subepithelial fibrosis. This suggests its potential role in the development of a possible novel therapeutic approach for the treatment of subepithelial fibrosis during asthma.


Asunto(s)
Asma , PPAR delta , Humanos , Factor de Crecimiento Transformador beta/metabolismo , PPAR delta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Fibroblastos/metabolismo , Asma/metabolismo , Bronquios/metabolismo , Miofibroblastos/metabolismo , Fibrosis , Células Cultivadas
5.
Cell Mol Biol Lett ; 27(1): 100, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401206

RESUMEN

BACKGROUND: Metformin is an inhibitor of oxidative phosphorylation that displays an array of anticancer activities. The interference of metformin with the activity of multi-drug resistance systems in cancer cells has been reported. However, the consequences of the acquired chemoresistance for the adaptative responses of cancer cells to metformin-induced stress and for their phenotypic evolution remain unaddressed. METHODS: Using a range of phenotypic and metabolic assays, we assessed the sensitivity of human prostate cancer PC-3 and DU145 cells, and their drug-resistant lineages (PC-3_DCX20 and DU145_DCX20), to combined docetaxel/metformin stress. Their adaptation responses have been assessed, in particular the shifts in their metabolic profile and invasiveness. RESULTS: Metformin increased the sensitivity of PC-3 wild-type (WT) cells to docetaxel, as illustrated by the attenuation of their motility, proliferation, and viability after the combined drug application. These effects correlated with the accumulation of energy carriers (NAD(P)H and ATP) and with the inactivation of ABC drug transporters in docetaxel/metformin-treated PC-3 WT cells. Both PC-3 WT and PC-3_DCX20 reacted to metformin with the Warburg effect; however, PC-3_DCX20 cells were considerably less susceptible to the cytostatic/misbalancing effects of metformin. Concomitantly, an epithelial-mesenchymal transition and Cx43 upregulation was seen in these cells, but not in other more docetaxel/metformin-sensitive DU145_DCX20 populations. Stronger cytostatic effects of the combined fenofibrate/docetaxel treatment confirmed that the fine-tuning of the balance between energy supply and expenditure determines cellular welfare under metabolic stress. CONCLUSIONS: Collectively, our data identify the mechanisms that underlie the limited potential of metformin for the chemotherapy of drug-resistant tumors. Metformin can enhance the sensitivity of cancer cells to chemotherapy by inducing their metabolic decoupling/imbalance. However, the acquired chemoresistance of cancer cells impairs this effect, facilitates cellular adaptation to metabolic stress, and prompts the invasive front formation.


Asunto(s)
Antineoplásicos , Citostáticos , Metformina , Neoplasias de la Próstata , Humanos , Masculino , Docetaxel/farmacología , Docetaxel/uso terapéutico , Taxoides/farmacología , Taxoides/uso terapéutico , Citostáticos/farmacología , Citostáticos/uso terapéutico , Resistencia a Antineoplásicos , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias de la Próstata/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Estrés Fisiológico
6.
Stem Cells ; 2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32985018

RESUMEN

Combinations of metabolic blockers (incl. fenofibrate) with chemotherapeutic drugs interfere with the drug-resistance of prostate cancer cells. However, their effect on cancer stem cells-dependent microevolution of prostate cancer malignancy remains unaddressed. Here, we hypothesize that the combined docetaxel/fenofibrate treatment prompts the selective expansion of cancer stem cells that affects the microevolution of their progenies. Accordingly, we adapted a combined in vitro/in vivo approach to identify biological and therapeutic consequences of this process. Minute subpopulations of docetaxel-resistant CD133high and/or CD44high cancer stem cell-like (SCL) cells were found in prostate cancer DU145 and PC3 cell populations. When pretreated with docetaxel, they readily differentiated into docetaxel-resistant CD44negative "bulk" cells, thus accounting for the microevolution of drug-resistant cell lineages. Combined docetaxel/fenofibrate treatment induced the generation of poly(morpho)nuclear giant cells and drug-resistant CD44high SCL cells. However, the CD44negative offspring of docetaxel- and docetaxel/fenofibrate-treated SCLs remained relatively sensitive to the combined treatment, while retaining enhanced resistance to docetaxel. Long-term propagation of drug-resistant SCL-derived lineages in the absence of docetaxel/fenofibrate resulted in their reverse microevolution toward the drug-sensitivity and invasive phenotype. Consequently, prostate tumors were able to recover from the combined docetaxel/fenofibrate stress after the initial arrest of their expansion in vivo. In conclusion, we have confirmed the potential of fenofibrate for the metronomic treatment of drug-resistant prostate tumors. However, docetaxel/fenofibrate-induced selective expansion of hyper-resistant CD44high SCL prostate cells and their "bulk" progenies prompts the microevolution of prostate tumor drug-resistance. This process can limit the implementation of metabolic chemotherapy in prostate cancer treatment.

7.
Biochem Genet ; 59(1): 62-82, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32767051

RESUMEN

Development of efficient vectors for transfection is one of the major challenges in genetic engineering. Previous research demonstrated that cationic derivatives of polyisoprenoids (PTAI) may serve as carriers of nucleic acids. In the present study, the effectiveness of two PTAI-based formulations (PTAI-6-8 and 10-14) was investigated and compared to the commercial reagents. The purpose of applied gene therapy was to enhance the expression of vascular endothelial growth factor (VEGF-A) in the renal medulla of spontaneously hypertensive rats (SHR) and to test its potential as a novel antihypertensive intervention. In the first part of the study (in vitro), we confirmed that PTAI-based lipoplexes efficiently transfect XC rat sarcoma cells and are stable in 37 °C for 7 days. In the in vivo experiments, we administered selected lipoplexes directly to the kidneys of conscious SHR (via osmotic pumps). There were no blood pressure changes and VEGF-A level in renal medulla was significantly higher only for PTAI-10-14-based formulation. In conclusion, despite the promising results, we were not able to achieve VEGF-A expression level high enough to verify VEGF-A gene therapy usefulness in SHR. However, results of our study give important indications for the future development of PTAI-based DNA carriers and kidney-targeted gene delivery.


Asunto(s)
Presión Sanguínea/genética , Terapia Genética/instrumentación , Vectores Genéticos , Hipertensión/terapia , Médula Renal/metabolismo , Poliprenoles/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular Tumoral , ADN/genética , Glucosa/metabolismo , Hipertensión/genética , Masculino , Ósmosis , Ratas , Ratas Endogámicas SHR , Transfección
8.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923767

RESUMEN

Glioblastoma multiforme (GBM) recurrences after temozolomide (TMZ) treatment result from the expansion of drug-resistant and potentially invasive GBM cells. This process is facilitated by O6-Methylguanine-DNA Methyltransferase (MGMT), which counteracts alkylating TMZ activity. We traced the expansion of invasive cell lineages under persistent chemotherapeutic stress in MGMTlow (U87) and MGMThigh (T98G) GBM populations to look into the mechanisms of TMZ-induced microevolution of GBM invasiveness. TMZ treatment induced short-term, pro-invasive phenotypic shifts of U87 cells, in the absence of Snail-1 activation. They were illustrated by a transient induction of their motility and followed by the hypertrophy and the signs of senescence in scarce U87 sub-populations that survived long-term TMZ stress. In turn, MGMThigh T98G cells reacted to the long-term TMZ treatment with the permanent induction of invasiveness. Ectopic Snail-1 down-regulation attenuated this effect, whereas its up-regulation augmented T98G invasiveness. MGMTlow and MGMThigh cells both reacted to the long-term TMZ stress with the induction of Cx43 expression. However, only in MGMThigh T98G populations, Cx43 was directly involved in the induction of invasiveness, as manifested by the induction of T98G invasiveness after ectopic Cx43 up-regulation and by the opposite effect after Cx43 down-regulation. Collectively, Snail-1/Cx43-dependent signaling participates in the long-term TMZ-induced microevolution of the invasive GBM front. High MGMT activity remains a prerequisite for this process, even though MGMT-related GBM chemoresistance is not necessary for its initiation.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Movimiento Celular/efectos de los fármacos , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Glioblastoma/metabolismo , Temozolomida/farmacología , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular Tumoral , Conexina 43/metabolismo , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Humanos , Fenotipo , Ratas , Factores de Transcripción de la Familia Snail/metabolismo , Proteínas Supresoras de Tumor/genética
9.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884593

RESUMEN

Subepithelial fibrosis is a component of the remodeling observed in the bronchial wall of patients diagnosed with asthma. In this process, human bronchial fibroblasts (HBFs) drive the fibroblast-to-myofibroblast transition (FMT) in response to transforming growth factor-ß1 (TGF-ß1), which activates the canonical Smad-dependent signaling. However, the pleiotropic properties of TGF-ß1 also promote the activation of non-canonical signaling pathways which can affect the FMT. In this study we investigated the effect of p38 mitogen-activated protein kinase (MAPK) inhibition by SB203580 on the FMT potential of HBFs derived from asthmatic patients using immunocytofluorescence, real-time PCR and Western blotting methods. Our results demonstrate for the first time the strong effect of p38 MAPK inhibition on the TGF-ß1-induced FMT potential throughout the strong attenuation of myofibroblast-related markers: α-smooth muscle actin (α-SMA), collagen I, fibronectin and connexin 43 in HBFs. We suggest the pleiotropic mechanism of SB203580 on FMT impairment in HBF populations by the diminishing of TGF-ß/Smad signaling activation and disturbances in the actin cytoskeleton architecture along with the maturation of focal adhesion sites. These observations justify future research on the role of p38 kinase in FMT efficiency and bronchial wall remodeling in asthma.


Asunto(s)
Asma/tratamiento farmacológico , Bronquios/efectos de los fármacos , Diferenciación Celular , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Imidazoles/farmacología , Piridinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Adulto , Asma/enzimología , Asma/patología , Bronquios/enzimología , Células Cultivadas , Femenino , Fibroblastos/enzimología , Humanos , Masculino , Persona de Mediana Edad , Transducción de Señal
10.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207549

RESUMEN

Doxorubicin (DOX) is a widely used anticancer drug. However, its clinical use is severely limited due to drug-induced cumulative cardiotoxicity, which leads to progressive cardiomyocyte dysfunction and heart failure. Enormous efforts have been made to identify potential strategies to alleviate DOX-induced cardiotoxicity; however, to date, no universal and highly effective therapy has been introduced. Here we reported that cinnamic acid (CA) derivatives exert a multitarget protective effect against DOX-induced cardiotoxicity. The experiments were performed on rat cardiomyocytes (H9c2) and human induced-pluripotent-stem-cell-derived cardiomyocytes (hiPSC-CMs) as a well-established model for cardiac toxicity assessment. CA derivatives protected cardiomyocytes by ameliorating DOX-induced oxidative stress and viability reduction. Our data indicated that they attenuated the chemotherapeutic's toxicity by downregulating levels of caspase-3 and -7. Pre-incubation of cardiomyocytes with CA derivatives prevented DOX-induced motility inhibition in a wound-healing assay and limited cytoskeleton rearrangement. Detailed safety analyses-including hepatotoxicity, mutagenic potential, and interaction with the hERG channel-were performed for the most promising compounds. We concluded that CA derivatives show a multidirectional protective effect against DOX-induced cardiotoxicity. The results should encourage further research to elucidate the exact molecular mechanism of the compounds' activity. The lead structure of the analyzed CA derivatives may serve as a starting point for the development of novel therapeutics to support patients undergoing DOX therapy.


Asunto(s)
Cardiotónicos/farmacología , Cardiotoxicidad , Cinamatos/farmacología , Doxorrubicina/efectos adversos , Miocitos Cardíacos , Estrés Oxidativo/efectos de los fármacos , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Doxorrubicina/farmacología , Células Hep G2 , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas
11.
Circ Res ; 122(2): 296-309, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29118058

RESUMEN

RATIONALE: Extracellular vesicles (EVs) are tiny membrane-enclosed droplets released by cells through membrane budding or exocytosis. The myocardial reparative abilities of EVs derived from induced pluripotent stem cells (iPSCs) have not been directly compared with the source iPSCs. OBJECTIVE: To examine whether iPSC-derived EVs can influence the biological functions of cardiac cells in vitro and to compare the safety and efficacy of iPSC-derived EVs (iPSC-EVs) and iPSCs for cardiac repair in vivo. METHODS AND RESULTS: Murine iPSCs were generated, and EVs isolated from culture supernatants by sequential centrifugation. Atomic force microscopy, high-resolution flow cytometry, real-time quantitative RT-PCR, and mass spectrometry were used to characterize EV morphology and contents. iPSC-EVs were enriched in miRNAs and proteins with proangiogenic and cytoprotective properties. iPSC-EVs enhanced angiogenic, migratory, and antiapoptotic properties of murine cardiac endothelial cells in vitro. To compare the cardiac reparative capacities in vivo, vehicle, iPSCs, and iPSC-EVs were injected intramyocardially at 48 hours after a reperfused myocardial infarction in mice. Compared with vehicle-injected mice, both iPSC- and iPSC-EV-treated mice exhibited improved left ventricular function at 35 d after myocardial infarction, albeit iPSC-EVs rendered greater improvement. iPSC-EV injection also resulted in reduction in left ventricular mass and superior perfusion in the infarct zone. Both iPSCs and iPSC-EVs preserved viable myocardium in the infarct zone, whereas reduction in apoptosis was significant with iPSC-EVs. iPSC injection resulted in teratoma formation, whereas iPSC-EV injection was safe. CONCLUSIONS: iPSC-derived EVs impart cytoprotective properties to cardiac cells in vitro and induce superior cardiac repair in vivo with regard to left ventricular function, vascularization, and amelioration of apoptosis and hypertrophy. Because of their acellular nature, iPSC-EVs represent a safer alternative for potential therapeutic applications in patients with ischemic myocardial damage.


Asunto(s)
Vesículas Extracelulares/fisiología , Vesículas Extracelulares/trasplante , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/trasplante , Daño por Reperfusión Miocárdica/terapia , Animales , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/trasplante , Resultado del Tratamiento
12.
Cell Mol Life Sci ; 76(1): 209, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30155648

RESUMEN

In the original publication, funding information was inadvertently omitted.

13.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859105

RESUMEN

Human dental pulp harbours unique stem cell population exhibiting mesenchymal stem/stromal cell (MSC) characteristics. This study aimed to analyse the differentiation potential and other essential functional and morphological features of dental pulp stem cells (DPSCs) in comparison with Wharton's jelly-derived MSCs from the umbilical cord (UC-MSCs), and to evaluate the osteogenic differentiation of DPSCs in 3D culture with a hypoxic microenvironment resembling the stem cell niche. Human DPSCs as well as UC-MSCs were isolated from primary human tissues and were subjected to a series of experiments. We established a multiantigenic profile of DPSCs with CD45-/CD14-/CD34-/CD29+/CD44+/CD73+/CD90+/CD105+/Stro-1+/HLA-DR- (using flow cytometry) and confirmed their tri-lineage osteogenic, chondrogenic, and adipogenic differentiation potential (using qRT-PCR and histochemical staining) in comparison with the UC-MSCs. The results also demonstrated the potency of DPSCs to differentiate into osteoblasts in vitro. Moreover, we showed that the DPSCs exhibit limited cardiomyogenic and endothelial differentiation potential. Decreased proliferation and metabolic activity as well as increased osteogenic differentiation of DPSCs in vitro, attributed to 3D cell encapsulation and low oxygen concentration, were also observed. DPSCs exhibiting elevated osteogenic potential may serve as potential candidates for a cell-based product for advanced therapy, particularly for bone repair. Novel tissue engineering approaches combining DPSCs, 3D biomaterial scaffolds, and other stimulating chemical factors may represent innovative strategies for pro-regenerative therapies.


Asunto(s)
Adipogénesis , Técnicas de Cultivo de Célula/métodos , Condrogénesis , Pulpa Dental/citología , Osteogénesis , Diferenciación Celular , Hipoxia de la Célula , Proliferación Celular , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Mesenquimatosas/citología , Nicho de Células Madre , Ingeniería de Tejidos , Gelatina de Wharton/citología
14.
Cell Mol Life Sci ; 75(21): 3943-3961, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30101406

RESUMEN

Bronchial asthma is a chronic inflammatory disease in which bronchial wall remodelling plays a significant role. This phenomenon is related to enhanced proliferation of airway smooth muscle cells, elevated extracellular matrix protein secretion and an increased number of myofibroblasts. Phenotypic fibroblast-to-myofibroblast transition represents one of the primary mechanisms by which myofibroblasts arise in fibrotic lung tissue. Fibroblast-to-myofibroblast transition requires a combination of several types of factors, the most important of which are divided into humoural and mechanical factors, as well as certain extracellular matrix proteins. Despite intensive research on the nature of this process, its underlying mechanisms during bronchial airway wall remodelling in asthma are not yet fully clarified. This review focuses on what is known about the nature of fibroblast-to-myofibroblast transition in asthma. We aim to consider possible mechanisms and conditions that may play an important role in fibroblast-to-myofibroblast transition but have not yet been discussed in this context. Recent studies have shown that some inherent and previously undescribed features of fibroblasts can also play a significant role in fibroblast-to-myofibroblast transition. Differences observed between asthmatic and non-asthmatic bronchial fibroblasts (e.g., response to transforming growth factor ß, cell shape, elasticity, and protein expression profile) may have a crucial influence on this phenomenon. An accurate understanding and recognition of all factors affecting fibroblast-to-myofibroblast transition might provide an opportunity to discover efficient methods of counteracting this phenomenon.


Asunto(s)
Asma/patología , Fibroblastos/patología , Fibrosis/patología , Miofibroblastos/patología , Remodelación de las Vías Aéreas (Respiratorias) , Bronquios/patología , Diferenciación Celular , Forma de la Célula , Humanos
15.
Int J Mol Sci ; 20(18)2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31540083

RESUMEN

The potential therapeutic applications of mesenchymal stem/stromal cells (MSCs) and biomaterials have attracted a great amount of interest in the field of biomedical engineering. MSCs are multipotent adult stem cells characterized as cells with specific features, e.g., high differentiation potential, low immunogenicity, immunomodulatory properties, and efficient in vitro expansion ability. Human umbilical cord Wharton's jelly-derived MSCs (hUC-MSCs) are a new, important cell type that may be used for therapeutic purposes, i.e., for autologous and allogeneic transplantations. To improve the therapeutic efficiency of hUC-MSCs, novel biomaterials have been considered for use as scaffolds dedicated to the propagation and differentiation of these cells. Nowadays, some of the most promising materials for tissue engineering include graphene and its derivatives such as graphene oxide (GO) and reduced graphene oxide (rGO). Due to their physicochemical properties, they can be easily modified with biomolecules, which enable their interaction with different types of cells, including MSCs. In this study, we demonstrate the impact of graphene-based substrates (GO, rGO) on the biological properties of hUC-MSCs. The size of the GO flakes and the reduction level of GO have been considered as important factors determining the most favorable surface for hUC-MSCs growth. The obtained results revealed that GO and rGO are suitable scaffolds for hUC-MSCs. hUC-MSCs cultured on: (i) a thin layer of GO and (ii) an rGO surface with a low reduction level demonstrated a viability and proliferation rate comparable to those estimated under standard culture conditions. Interestingly, cell culture on a highly reduced GO substrate resulted in a decreased hUC-MSCs proliferation rate and induced cell apoptosis. Moreover, our analysis demonstrated that hUC-MSCs cultured on all the tested GO and rGO scaffolds showed no alterations of their typical mesenchymal phenotype, regardless of the reduction level and size of the GO flakes. Thus, GO scaffolds and rGO scaffolds with a low reduction level exhibit potential applicability as novel, safe, and biocompatible materials for utilization in regenerative medicine.


Asunto(s)
Materiales Biocompatibles/química , Grafito/química , Células Madre Mesenquimatosas/citología , Gelatina de Wharton/citología , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Grafito/síntesis química , Humanos , Células Madre Mesenquimatosas/metabolismo , Microscopía Electrónica de Rastreo , Espectroscopía de Fotoelectrones , Espectrometría Raman , Ingeniería de Tejidos , Cordón Umbilical/citología
16.
Biochim Biophys Acta Mol Cell Res ; 1864(2): 267-279, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27864076

RESUMEN

Bone marrow-derived cells are thought to participate and enhance the healing process contributing to skin cells or releasing regulatory cytokines. Directional cell migration in a weak direct current electric field (DC-EF), known as electrotaxis, may be a way of cell recruitment to the wound site. Here we examined the influence of electric field on bone marrow adherent cells (BMACs) and its potential role as a factor attracting mesenchymal stem cells to cutaneous wounds. We observed that in an external EF, BMAC movement was accelerated and highly directed with distinction of two cell populations migrating toward opposite poles: mesenchymal stem cells migrated toward the cathode, whereas macrophages toward the anode. Analysis of intracellular pathways revealed that macrophage electrotaxis mostly depended on Rho family small GTPases and calcium ions, but interruption of PI3K and Arp2/3 had the most pronounced effect on electrotaxis of MSCs. However, in all cases we observed only a partial decrease in directionality of cell movement after inhibition of certain proteins. Additionally, although we noticed the accumulation of EGFR at the cathodal side of MSCs, it was not involved in electrotaxis. Moreover, the cell reaction to EF was very dynamic with first symptoms occurring within <1min. In conclusion, the physiological DC-EF may act as a factor positioning bone marrow cells within a wound bed and the opposite direction of MSC and macrophage movement did not result either from utilizing different signalling or redistribution of investigated cell surface receptors.


Asunto(s)
Células de la Médula Ósea/citología , Electricidad , Células Madre Mesenquimatosas/citología , Piel/lesiones , Cicatrización de Heridas , Animales , Células de la Médula Ósea/metabolismo , Calcio/metabolismo , Movimiento Celular , Receptores ErbB/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
17.
Cytokine ; 102: 187-190, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28927757

RESUMEN

Fibroblast to myofibroblast transition (FMT) contributes to bronchial wall remodelling in persistent asthma. Among other numerous factors involved, transforming growth factor type ß (TGF-ß) plays a pivotal role. Recently it has been demonstrated that connective tissue growth factor (CTGF), a matricellular protein, combines with TGF-ß in the pathomechanism of many fibrotic disorders. However, it is not clear whether this interaction takes place in asthma as well. Primary cultures of human bronchial fibroblasts from asthmatic and non-asthmatic subjects were used to investigate the impact of CTGF and TGF-ß1 on the fibroblast to myofibroblast transition. The combined activity of TGF-ß1 and CTGF resulted in an average of 90% of FMT accomplished in cell lines derived from asthmatics. In this group FMT was highly dependent on the presence of CTGF produced by the cells, as shown by gene silencing experiments with the specific siRNA. Results support the important role of CTGF biosynthesis in the asthmatic bronchi amplifying FMT. This is evidenced by inhibition of TGF-ß1-induced FMT following CTGF silencing in asthmatic bronchial fibroblasts. CTGF is produced by fibroblasts and contributes to the FMT phenomenon in positive loop-back, inducing and boosting TGF-ß1 triggered FMT. Thus, CTGF is a promising target for pharmacological intervention in secondary prevention of bronchial remodelling in asthma.


Asunto(s)
Asma/patología , Asma/fisiopatología , Bronquios/fisiología , Bronquios/fisiopatología , Factor de Crecimiento del Tejido Conjuntivo/fisiología , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Asma/terapia , Transdiferenciación Celular/fisiología , Células Cultivadas , Factor de Crecimiento del Tejido Conjuntivo/antagonistas & inhibidores , Factor de Crecimiento del Tejido Conjuntivo/genética , Fibroblastos/patología , Humanos , Miofibroblastos/patología , ARN Interferente Pequeño/genética , Factor de Crecimiento Transformador beta1/fisiología
18.
Int J Mol Sci ; 19(9)2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158495

RESUMEN

The activation of human bronchial fibroblasts by transforming growth factor-ß1 (TGF-ß1) leads to the formation of highly contractile myofibroblasts in the process of the fibroblast⁻myofibroblast transition (FMT). This process is crucial for subepithelial fibrosis and bronchial wall remodeling in asthma. However, this process evades current therapeutic asthma treatment strategies. Since our previous studies showed the attenuation of the TGF-ß1-induced FMT in response to lipid-lowering agents (e.g., statins), we were interested to see whether a corresponding effect could be obtained upon administration of hypolipidemic agents. In this study, we investigated the effect of fenofibrate on FMT efficiency in populations of bronchial fibroblasts derived from asthmatic patients. Fenofibrate exerted a dose-dependent inhibitory effect on the FMT, even though it did not efficiently affect the expression of α-smooth muscle actin (α-SMA; marker of myofibroblasts); however, it considerably reduced its incorporation into stress fibers through connexin 43 regulation. This effect was accompanied by disturbances in the actin cytoskeleton architecture, impairments in the maturation of focal adhesions, and the fenofibrate-induced deactivation of TGF-ß1/Smad2/3 signaling. These data suggest that fenofibrate interferes with myofibroblastic differentiation during asthma-related subepithelial fibrosis. The data indicate the potential application of fenofibrate in the therapy and prevention of bronchial remodeling during the asthmatic process.


Asunto(s)
Asma/metabolismo , Conexina 43/metabolismo , Fenofibrato/farmacología , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/citología , Humanos , Miofibroblastos/citología , Transducción de Señal/efectos de los fármacos
19.
Am J Respir Cell Mol Biol ; 57(1): 100-110, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28245135

RESUMEN

Pathologic accumulation of myofibroblasts in asthmatic bronchi is regulated by extrinsic stimuli and by the intrinsic susceptibility of bronchial fibroblasts to transforming growth factor-ß (TGF-ß). The specific function of gap junctions and connexins in this process has remained unknown. Here, we investigated the role of connexin43 (Cx43) in TGF-ß-induced myofibroblastic differentiation of fibroblasts derived from bronchoscopic biopsy specimens of patients with asthma and donors without asthma. Asthmatic fibroblasts expressed considerably higher levels of Cx43 and were more susceptible to TGF-ß1-induced myofibroblastic differentiation than were their nonasthmatic counterparts. TGF-ß1 efficiently up-regulated Cx43 levels and activated the canonical Smad pathway in asthmatic cells. Ectopic Cx43 expression in nonasthmatic (Cx43low) fibroblasts increased their predilection to TGF-ß1-induced Smad2 activation and fibroblast-myofibroblast transition. Transient Cx43 silencing in asthmatic (Cx43high) fibroblasts by Cx43 small interfering RNA attenuated the TGF-ß1-triggered Smad2 activation and myofibroblast formation. Direct interactions of Smad2 and Cx43 with ß-tubulin were demonstrated by co-immunoprecipitation assay, whereas the sensitivity of these interactions to TGF-ß1 signaling was confirmed by Förster Resonance Energy Transfer analyses. Furthermore, inhibition of the TGF-ß1/Smad pathway attenuated TGF-ß1-triggered Cx43 up-regulation and myofibroblast differentiation of asthmatic fibroblasts. Chemical inhibition of gap junctional intercellular communication with 18 α-glycyrrhetinic acid did not affect the initiation of fibroblast-myofibroblast transition in asthmatic fibroblasts but interfered with the maintenance of their myofibroblastic phenotype. Collectively, our data identified Cx43 as a new player in the feedback mechanism regulating TGF-ß1/Smad-dependent differentiation of bronchial fibroblasts. Thus, our observations point to Cx43 as a novel profibrotic factor in asthma progression.


Asunto(s)
Asma/metabolismo , Asma/patología , Bronquios/patología , Diferenciación Celular , Conexina 43/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Adulto , Diferenciación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Persona de Mediana Edad , Miofibroblastos/efectos de los fármacos , Fenotipo , Transducción de Señal/efectos de los fármacos , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Regulación hacia Arriba/efectos de los fármacos
20.
Virol J ; 14(1): 168, 2017 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-28865454

RESUMEN

BACKGROUND: Cationic derivatives of polyprenols (trimethylpolyprenylammonium iodides - PTAI) with variable chain length between 6 and 15 isoprene units prepared from naturally occurring poly-cis-prenols were tested as DNA vaccine carriers in chickens and mice. This study aimed to investigate if PTAI could be used as an efficient carrier of a DNA vaccine. METHODS: Several vaccine mixtures were prepared by combining different proportions of the vaccine plasmid (carrying cDNA encoding a vaccine antigen, hemagglutinin from H5N1 influenza virus) and various compositions of PTAI. The vaccines were delivered by intramuscular injection to either chickens or mice. The presence of specific antibodies in sera collected from the immunized animals was analyzed by enzyme-linked immunosorbent assay (ELISA) and hemagglutination inhibition (HI) test. RESULTS: The mixtures of PTAI with helper lipids, such as DOPE (1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine), DC-cholesterol [{3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol} hydrochloride] or DOPC (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) induced strong humoral response to the antigen encoded by the DNA vaccine plasmid. CONCLUSION: The animal immunization results confirmed that PTAI compositions, especially mixtures of PTAI with DOPE and DC-cholesterol, do work as effective carriers of DNA vaccines, comparable to the commercially available lipid transfection reagent.


Asunto(s)
Sistemas de Liberación de Medicamentos , Inmunidad Humoral/inmunología , Vacunas contra la Influenza/inmunología , Vacunación/métodos , Vacunas de ADN/inmunología , Compuestos de Amonio/administración & dosificación , Compuestos de Amonio/química , Animales , Anticuerpos Antivirales/sangre , Cationes/química , Pollos , Modelos Animales de Enfermedad , Femenino , Vacunas contra la Influenza/administración & dosificación , Yoduros/administración & dosificación , Yoduros/química , Masculino , Ratones , Ratones Endogámicos BALB C , Compuestos de Amonio Cuaternario/administración & dosificación , Compuestos de Amonio Cuaternario/química , Vacunas de ADN/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA