Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 91(2): 819-827, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37815014

RESUMEN

PURPOSE: To develop a portable MR perfusion phantom for quality-controlled assessment and reproducibility of arterial spin labeled (ASL) perfusion measurement. METHODS: A 3D-printed perfusion phantom was developed that mimics the branching of arterial vessels, capillaries, and a chamber containing cellulose sponge representing tissue characteristics. A peristaltic pump circulated distilled water through the phantom, and was first evaluated at 300, 400, and 500 mL/min. Longitudinal reproducibility of perfusion was performed using 2D pseudo-continuous ASL at 20 post-label delays (PLDs, ranging between 0.2 and 7.8 s at 0.4-s intervals) over a period of 16 weeks, with three repetitions each week. Multi-PLD data were fitted into a general kinetic model for perfusion quantification (f) and arterial transit time (ATT). Intraclass correlation coefficient was used to assess intersession reproducibility. RESULTS: MR perfusion signals acquired in the 3D-printed perfusion phantom agreed well with the experimental conditions, with progressively increasing signal intensities and decreasing ATT for pump flow rates from 300 to 500 mL/min. The perfusion signal at 400 mL/min and the general kinetic model-derived f and ATT maps were similar across all PLDs for both intrasession and intersession reproducibility. Across all 48 experimental time points, the average f was 75.55 ± 3.83 × 10-3 mL/mL/s, the corresponding ATT was 2.10 ± 0.20 s, and the T1 was 1.84 ± 0.102 s. Intraclass correlation coefficient was 0.92 (95% confidence interval 0.83-0.97) for f, 0.96 (0.91-0.99) for ATT, and 0.94 (0.88-0.98) for T1 , demonstrating excellent reproducibility. CONCLUSION: A simple, portable 3D-printed perfusion phantom with excellent reproducibility of 2D pseudo-continuous ASL measurements was demonstrated that can serve for quality-controlled and reliable measurements of ASL perfusion.


Asunto(s)
Circulación Cerebrovascular , Imagen por Resonancia Magnética , Marcadores de Spin , Reproducibilidad de los Resultados , Perfusión , Impresión Tridimensional
2.
Magn Reson Med ; 92(2): 469-495, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594906

RESUMEN

Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.


Asunto(s)
Encéfalo , Circulación Cerebrovascular , Marcadores de Spin , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión
3.
Magn Reson Med ; 89(5): 1754-1776, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36747380

RESUMEN

This review article provides an overview of developments for arterial spin labeling (ASL) perfusion imaging in the body (i.e., outside of the brain). It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. In this review, we focus on specific challenges and developments tailored for ASL in a variety of body locations. After presenting common challenges, organ-specific reviews of challenges and developments are presented, including kidneys, lungs, heart (myocardium), placenta, eye (retina), liver, pancreas, and muscle, which are regions that have seen the most developments outside of the brain. Summaries and recommendations of acquisition parameters (when appropriate) are provided for each organ. We then explore the possibilities for wider adoption of body ASL based on large standardization efforts, as well as the potential opportunities based on recent advances in high/low-field systems and machine-learning. This review seeks to provide an overview of the current state-of-the-art of ASL for applications in the body, highlighting ongoing challenges and solutions that aim to enable more widespread use of the technique in clinical practice.


Asunto(s)
Encéfalo , Angiografía por Resonancia Magnética , Embarazo , Femenino , Humanos , Angiografía por Resonancia Magnética/métodos , Marcadores de Spin , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Perfusión , Imagen de Perfusión , Circulación Cerebrovascular/fisiología
4.
Eur Radiol ; 33(12): 9223-9232, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37466705

RESUMEN

OBJECTIVES: To evaluate longitudinal placental perfusion using pseudo-continuous arterial spin-labeled (pCASL) MRI in normal pregnancies and in pregnancies affected by chronic hypertension (cHTN), who are at the greatest risk for placental-mediated disease conditions. METHODS: Eighteen normal and 23 pregnant subjects with cHTN requiring antihypertensive therapy were scanned at 3 T using free-breathing pCASL-MRI at 16-20 and 24-28 weeks of gestational age. RESULTS: Mean placental perfusion was 103.1 ± 48.0 and 71.4 ± 18.3 mL/100 g/min at 16-20 and 24-28 weeks respectively in normal pregnancies and 79.4 ± 27.4 and 74.9 ± 26.6 mL/100 g/min in cHTN pregnancies. There was a significant decrease in perfusion between the first and second scans in normal pregnancies (p = 0.004), which was not observed in cHTN pregnancies (p = 0.36). The mean perfusion was not statistically different between normal and cHTN pregnancies at both scans, but the absolute change in perfusion per week was statistically different between these groups (p = 0.044). Furthermore, placental perfusion was significantly lower at both time points (p = 0.027 and 0.044 respectively) in the four pregnant subjects with cHTN who went on to have infants that were small for gestational age (52.7 ± 20.4 and 50.4 ± 20.9 mL/100 g/min) versus those who did not (85 ± 25.6 and 80.0 ± 25.1 mL/100 g/min). CONCLUSION: pCASL-MRI enables longitudinal assessment of placental perfusion in pregnant subjects. Placental perfusion in the second trimester declined in normal pregnancies whereas it remained unchanged in cHTN pregnancies, consistent with alterations due to vascular disease pathology. Perfusion was significantly lower in those with small for gestational age infants, indicating that pCASL-MRI-measured perfusion may be an effective imaging biomarker for placental insufficiency. CLINICAL RELEVANCE STATEMENT: pCASL-MRI enables longitudinal assessment of placental perfusion without administering exogenous contrast agent and can identify placental insufficiency in pregnant subjects with chronic hypertension that can lead to earlier interventions. KEY POINTS: • Arterial spin-labeled (ASL) magnetic resonance imaging (MRI) enables longitudinal assessment of placental perfusion without administering exogenous contrast agent. • ASL-MRI-measured placental perfusion decreased significantly between 16-20 week and 24-28 week gestational age in normal pregnancies, while it remained relatively constant in hypertensive pregnancies, attributed to vascular disease pathology. • ASL-MRI-measured placental perfusion was significantly lower in subjects with hypertension who had a small for gestational age infant at 16-20-week gestation, indicating perfusion as an effective biomarker of placental insufficiency.


Asunto(s)
Hipertensión , Insuficiencia Placentaria , Embarazo , Femenino , Humanos , Lactante , Placenta/diagnóstico por imagen , Marcadores de Spin , Medios de Contraste , Imagen por Resonancia Magnética/métodos , Perfusión , Biomarcadores
5.
Magn Reson Med ; 88(5): 2021-2042, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35983963

RESUMEN

This review article provides an overview of a range of recent technical developments in advanced arterial spin labeling (ASL) methods that have been developed or adopted by the community since the publication of a previous ASL consensus paper by Alsop et al. It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine Perfusion Study Group. Here, we focus on advancements in readouts and trajectories, image reconstruction, noise reduction, partial volume correction, quantification of nonperfusion parameters, fMRI, fingerprinting, vessel selective ASL, angiography, deep learning, and ultrahigh field ASL. We aim to provide a high level of understanding of these new approaches and some guidance for their implementation, with the goal of facilitating the adoption of such advances by research groups and by MRI vendors. Topics outside the scope of this article that are reviewed at length in separate articles include velocity selective ASL, multiple-timepoint ASL, body ASL, and clinical ASL recommendations.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Circulación Cerebrovascular , Procesamiento de Imagen Asistido por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Marcadores de Spin
6.
J Magn Reson Imaging ; 55(6): 1745-1758, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34767682

RESUMEN

BACKGROUND: Diffusion-weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. PURPOSE: To compare 14 site-specific parametric fitting implementations applied to the same dataset of whole-mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms. STUDY TYPE: Prospective. POPULATION: Thirty-three patients prospectively imaged prior to prostatectomy. FIELD STRENGTH/SEQUENCE: 3 T, field-of-view optimized and constrained undistorted single-shot DWI sequence. ASSESSMENT: Datasets, including a noise-free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono-exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi-exponential diffusion (BID), pseudo-diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC). STATISTICAL TEST: Levene's test, P < 0.05 corrected for multiple comparisons was considered statistically significant. RESULTS: The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72-0.76, 0.76-0.81, and 0.76-0.80 respectively) as compared to bi-exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53-0.80, 0.51-0.81, and 0.52-0.80 respectively). Post-processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size. DATA CONCLUSION: We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post-processing decisions on DWI data can affect sensitivity and specificity when applied to radiological-pathological studies in prostate cancer. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Neoplasias de la Próstata , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Masculino , Estudios Prospectivos , Neoplasias de la Próstata/diagnóstico por imagen , Curva ROC , Estudios Retrospectivos , Sensibilidad y Especificidad
7.
Magn Reson Med ; 86(3): 1463-1471, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33929055

RESUMEN

PURPOSE: To develop a true single shot turbo spin echo (SShTSE) acquisition with Dixon for robust T2 -weighted abdominal imaging with uniform fat and water separation at 3T. METHODS: The in-phase (IP) and out-of-phase (OP) echoes for Dixon processing were acquired in the same repetition time of a SShTSE using partial echoes. A phase-preserved bi-directional homodyne reconstruction was developed to compensate the partial echo and the partial phase encoding of SShTSE. With IRB approval, the SShTSE-Dixon was compared against standard SShTSE, without and with fat suppression using spectral adiabatic inversion recovery (SPAIR) in 5 healthy volunteers and 5 patients. The SNR and contrast ratio (CR) of spleen to liver were compared among different acquisitions. RESULTS: The bi-directional homodyne reconstruction successfully minimized ringing artifacts because of partial acquisitions. SShTSE-Dixon achieved uniform fat suppression compared to SShTSE-SPAIR with fat suppression failures of 1/10 versus 10/10 in the axial plane and 0/5 versus 5/5 in the coronal plane, respectively. The SNRs of the liver (12.2 ± 4.9 vs. 11.7 ± 5.2; P = .76) and spleen (25.9 ± 11.6 vs. 23.7 ± 9.7; P = .14) were equivalent between fat-suppressed images (SShTSE-Dixon water-only and SShTSE-SPAIR). The SNRs of liver (14.4 ± 5.7 vs. 13.4 ± 5.0; P = .60) and spleen (26.5 ± 10.1 vs. 25.7 ± 8.5; P = .56) were equivalent between non-fat-suppressed images (SShTSE-Dixon IP and SShTSE). The CRs of spleen to liver were also similar between fat-suppressed images (2.6 ± 0.4 vs. 2.5 ± 0.5; P =.92) and non-fat-suppressed images (2.3 ± 0.6 vs. 2.2 ± 0.4; P =.84). CONCLUSION: SShTSE-Dixon generates robust abdominal T2 -weighted images at 3T with and without uniform fat suppression, along with perfectly co-registered fat-only images in a single acquisition.


Asunto(s)
Imagen por Resonancia Magnética , Agua , Tejido Adiposo/diagnóstico por imagen , Humanos , Aumento de la Imagen , Interpretación de Imagen Asistida por Computador
8.
Magn Reson Med ; 85(4): 2136-2144, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33107146

RESUMEN

PURPOSE: The recently introduced inhomogeneous magnetization transfer (ihMT) method has predominantly been applied for imaging the central nervous system. Future applications of ihMT, such as in peripheral nerves and muscles, will involve imaging in the vicinity of adipose tissues. This work aims to systematically investigate the partial volume effect of fat on the ihMT signal and to propose an efficient fat-separation method that does not interfere with ihMT measurements. METHODS: First, the influence of fat on ihMT signal was studied using simulations. Next, the ihMT sequence was combined with a multi-echo Dixon acquisition for fat separation. The sequence was tested in 9 healthy volunteers using a 3T human scanner. The ihMT ratio (ihMTR) values were calculated in regions of interest in the brain and the spinal cord using standard acquisition (no fat saturation), water-only, in-phase, and out-of-phase reconstructions. The values obtained were compared with a standard fat suppression method, spectral presaturation with inversion recovery. RESULTS: Simulations showed variations in the ihMTR values in the presence of fat, depending on the TEs used. The IhMTR values in the brain and spinal cord derived from the water-only ihMT multi-echo Dixon images were in good agreement with values from the unsuppressed sequence. The ihMT-spectral presaturation with inversion recovery combination resulted in 24%-35% lower ihMTR values compared with the standard non-fat-suppressed acquisition. CONCLUSION: The presence of fat within a voxel affects the ihMTR calculations. The IhMT multi-echo Dixon method does not compromise the observable ihMT effect and can potentially be used to remove fat influence in ihMT.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Tejido Adiposo/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Voluntarios Sanos , Humanos , Médula Espinal
9.
J Magn Reson Imaging ; 51(3): 936-946, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31397528

RESUMEN

BACKGROUND: Placenta accreta spectrum (PAS) in women with previous cesarean delivery has become increasingly prevalent. Depending on the severity, patient management may involve cesarean hysterectomy. PURPOSE: To investigate textural analyses as the radiomics in MRI of the placenta in predicting the PAS requiring cesarean hysterectomy in a high-risk population. STUDY TYPE: Retrospective. POPULATION: Sixty-two women with prior cesarean delivery referred for MRI because of sonographic suspicion for PAS. FIELD STRENGTH/SEQUENCE: 1.5T with T1 W, T2 W, and diffusion-weighted imaging (DWI). ASSESSMENT: Two reviewers independently evaluated MR images based on five established PAS variables. Placental regions of interest (ROIs) were generated on T2 W, DWI, and an apparent diffusion coefficient (ADC) map, based on definitions of areas of placenta in proximity to and remote from previous surgical incision sites. STATISTICAL TESTS: Reader agreement was assessed by simple kappa and prevalence adjusted bias adjusted kappa (PABAK). T-tests and chi-square analyses between the primary outcome (hysterectomy vs. no hysterectomy) were performed. Thirteen Haralick texture features calculated from gray-level co-occurrence matrixes were extracted from manually drawn placental ROIs within each of three MR acquisitions. Univariate and multivariable logistic regression were used to assess the association with cesarean hysterectomy. RESULTS: Of 62 pregnancies at risk for PAS, 40 required cesarean hysterectomy (65%), with excellent correlation between need for hysterectomy and pathology confirmation of PAS in the hysterectomy specimen [κ = 0.82 (0.62, 1)]. Reader agreement was fair to moderate. Of the 13 Haralick variables within each of three acquisition groups, significant differences (P < 0.05) were seen in 22 of 39 parameters comparing placental ROIs in proximity to incision scar(s) to those ROIs remote from scar. A stepwise selection algorithm indicated that the combination of T2 W Fcm.sum.var , ADC Fcm.diff.entr , and DWI Fcm.energy gave the highest leave-one-out-AUC of 0.80 (0.68, 0.91). DATA CONCLUSION: Assessment of PAS severity is subjective and dependent on radiologist expertise. We identified textural features on placental MR images in the region of the prior uterine scar that differentiated pregnancies requiring cesarean hysterectomy based on clinical suspicion of PAS from those that did not, suggesting predictive capabilities of these objective radiomics features. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2020;51:936-946.


Asunto(s)
Placenta Accreta , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Histerectomía , Imagen por Resonancia Magnética , Placenta Accreta/diagnóstico por imagen , Placenta Accreta/cirugía , Embarazo , Estudios Retrospectivos
10.
J Comput Assist Tomogr ; 44(4): 519-526, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32697522

RESUMEN

We evaluated an alternative diffusion-weighted imaging (DWI) acquisition for prostate magnetic resonance imaging of men with pelvic hardware, using radial k-space sampling (MultiVane [MV]), short-tau inversion-recovery (STIR) fat suppression, and split acquisition of turbo spin-echo signals. The optimized STIR-MV-DWI reduced metal-associated artifacts and image distortion, and aided in visualization of the prostate and lesions. The STIR-MV-DWI can be a valuable adjunct in prostate magnetic resonance imaging of men with pelvic hardware, among whom the conventional echo-planar DWI is compromised.


Asunto(s)
Equipos y Suministros/efectos adversos , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Próstata/diagnóstico por imagen , Humanos , Masculino , Pelvis , Fantasmas de Imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Relación Señal-Ruido
11.
MAGMA ; 33(1): 141-161, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31833014

RESUMEN

OBJECTIVES: This study aimed at developing technical recommendations for the acquisition, processing and analysis of renal ASL data in the human kidney at 1.5 T and 3 T field strengths that can promote standardization of renal perfusion measurements and facilitate the comparability of results across scanners and in multi-centre clinical studies. METHODS: An international panel of 23 renal ASL experts followed a modified Delphi process, including on-line surveys and two in-person meetings, to formulate a series of consensus statements regarding patient preparation, hardware, acquisition protocol, analysis steps and data reporting. RESULTS: Fifty-nine statements achieved consensus, while agreement could not be reached on two statements related to patient preparation. As a default protocol, the panel recommends pseudo-continuous (PCASL) or flow-sensitive alternating inversion recovery (FAIR) labelling with a single-slice spin-echo EPI readout with background suppression and a simple but robust quantification model. DISCUSSION: This approach is considered robust and reproducible and can provide renal perfusion images of adequate quality and SNR for most applications. If extended kidney coverage is desirable, a 2D multislice readout is recommended. These recommendations are based on current available evidence and expert opinion. Nonetheless they are expected to be updated as more data become available, since the renal ASL literature is rapidly expanding.


Asunto(s)
Circulación Cerebrovascular , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/tendencias , Marcadores de Spin , Investigación Biomédica Traslacional/tendencias , Algoritmos , Consenso , Técnica Delphi , Imagen Eco-Planar , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/irrigación sanguínea , Trasplante de Riñón , Angiografía por Resonancia Magnética , Estudios Multicéntricos como Asunto , Perfusión , Arteria Renal/diagnóstico por imagen , Reproducibilidad de los Resultados , Relación Señal-Ruido
12.
Magn Reson Med ; 82(5): 1713-1724, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31231894

RESUMEN

PURPOSE: To improve the robustness of arterial spin-labeled measured perfusion using a novel Cartesian acquisition with spiral profile reordering (CASPR) 3D turbo spin echo (TSE) in the brain and kidneys. METHODS: The CASPR view ordering followed a pseudo-spiral trajectory on a Cartesian grid, by sampling the center of k-space at the beginning of each echo train of a segmented 3D TSE acquisition. With institutional review board approval and written informed consent, 14 normal subjects (9 brain and 5 kidneys) were scanned with pCASL perfusion imaging using 3D CASPR and compared against 3D linear TSE (brain and kidneys), the established 2D EPI and 3D gradient and spin echo perfusion (brain), and 2D single-shot turbo spin-echo perfusion (kidneys). The SNR and the quantitative perfusion values were compared among different acquisitions. RESULTS: 3D CASPR TSE achieved robust perfusion across all slices compared to 3D linear TSE in the brain and kidneys. Compared to 2D EPI, 3D CASPR TSE showed higher SNR across the brain (P < 0.01), and exhibited good agreement (36.4 ± 4.7 and 36.9 ± 5.3 mL/100 g/min with 2D EPI and 3D CASPR, respectively), and with 3D gradient and spin echo (27.9 ± 7.2 mL/100 g/min). Compared to a single slice 2D single-shot turbo spin-echo acquisition, 3D CASPR TSE achieved robust perfusion across the entire kidneys in similar scan time with comparable quantified perfusion values (154.1 ± 74.6 and 151.7 ± 70.6 mL/100 g/min with 2D single-shot turbo spin-echo and 3D CASPR, respectively). CONCLUSION: The CASPR view ordering with 3D TSE achieves robust arterial spin-labeled perfusion in the brain and kidneys because of the sampling of the center of k-space at the beginning of each echo train.


Asunto(s)
Encéfalo/irrigación sanguínea , Riñón/irrigación sanguínea , Angiografía por Resonancia Magnética/métodos , Adulto , Femenino , Voluntarios Sanos , Humanos , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Masculino , Relación Señal-Ruido , Marcadores de Spin
13.
Magn Reson Med ; 81(1): 504-513, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30146714

RESUMEN

PURPOSE: Chemical exchange saturation transfer is a novel and promising MRI contrast method, but it can be time-consuming. Common parallel imaging methods, like SENSE, can lead to reduced quality of CEST. Here, parallel blind compressed sensing (PBCS), combining blind compressed sensing (BCS) and parallel imaging, is evaluated for the acceleration of CEST in brain and breast. METHODS: The CEST data were collected in phantoms, brain (N = 3), and breast (N = 2). Retrospective Cartesian undersampling was implemented and the reconstruction results of PBCS-CEST were compared with BCS-CEST and k-t sparse-SENSE CEST. The normalized RMSE and the high-frequency error norm were used for quantitative comparison. RESULTS: In phantom and in vivo brain experiments, the acceleration factor of R = 10 (24 k-space lines) was achieved and in breast R = 5 (30 k-space lines), without compromising the quality of the PBCS-reconstructed magnetization transfer rate asymmetry maps and Z-spectra. Parallel BCS provides better reconstruction quality when compared with BCS, k-t sparse-SENSE, and SENSE methods using the same number of samples. Parallel BCS overperforms BCS, indicating that the inclusion of coil sensitivity improves the reconstruction of the CEST data. CONCLUSION: The PBCS method accelerates CEST without compromising its quality. Compressed sensing in combination with parallel imaging can provide a valuable alternative to parallel imaging alone for accelerating CEST experiments.


Asunto(s)
Encéfalo/diagnóstico por imagen , Mama/diagnóstico por imagen , Compresión de Datos/métodos , Imagen por Resonancia Magnética , Algoritmos , Medios de Contraste/química , Femenino , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador , Masculino , Distribución Normal , Fantasmas de Imagen , Reproducibilidad de los Resultados
15.
Magn Reson Med ; 79(5): 2731-2737, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28862349

RESUMEN

PURPOSE: Chemical exchange saturation transfer (CEST) MRI is increasingly evolving from brain to body applications. One of the known problems in the body imaging is the presence of strong lipid signals. Although their influence on the CEST effect is acknowledged, there was no study that focuses on the interplay among echo time, fat fraction, and Z-spectrum. This study strives to address these points, with the emphasis on the application in the breast. METHODS: Z-spectra were simulated in phase and out of phase of the main fat peak at -3.4 ppm, with the fat fraction varying from 0 to 100%. The magnetization transfer ratio asymmetry in two ranges, centering at the exchanging pool and at 3.5 ppm approximately opposite the nonexchanging fat pool, were calculated and were plotted against fat fraction. The results were verified in phantoms and in vivo. RESULTS: The results demonstrate the combined influence of fat fraction and echo time on the Z-spectrum for gradient echo based CEST acquisitions. The influence is straightforward in the in-phase images, but it is more complicated in the out-of-phase images, potentially leading to erroneous CEST contrast. CONCLUSIONS: This study provides a basis for understanding the origin and appearance of lipid artifacts in CEST imaging, and lays the foundation for their efficient removal. Magn Reson Med 79:2731-2737, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Mama/diagnóstico por imagen , Femenino , Humanos , Lípidos/química , Fantasmas de Imagen
16.
Magn Reson Med ; 80(4): 1402-1415, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29446127

RESUMEN

PURPOSE: To develop a whole-body MRI technique at 3T with improved lesion conspicuity for metastatic cancer detection using fast, high-resolution and high SNR T2 -weighted (T2 W) imaging with simultaneous fat and fluid suppression. THEORY AND METHODS: The proposed dual-echo T2 -weighted acquisition for enhanced conspicuity of tumors (DETECT) acquires 4 images, in-phase (IP) and out-of-phase (OP) at a short and a long TE using single-shot turbo spin echo. The IP/OP images at the short and long TEs are reconstructed using the standard Dixon and shared-field-map Dixon reconstruction respectively, for robust fat-water separation. An adaptive complex subtraction between the 2 TE water-only images achieves fluid attenuation. DETECT imaging was optimized and evaluated in whole-body imaging of 5 healthy volunteers, and compared against diffusion-weighted imaging with background suppression (DWIBS) in 5 patients with known metastatic renal cell carcinoma. RESULTS: Robust fat-water separation and fluid attenuation were achieved using the shared-field-map Dixon reconstruction and adaptive complex subtraction, respectively. DETECT imaging technique generated co-registered T2 W images with and without fat suppression, heavily T2 W, and fat and fluid suppressed T2 W whole-body images in <7 min. Compared to DWIBS acquired in 17 min, the DETECT imaging achieved better detection and localization of lesions in patients with metastatic cancer. CONCLUSION: DETECT imaging technique generates T2 W images with high resolution, high SNR, minimal geometric distortions, and provides good lesion conspicuity with robust fat and fluid suppression in <7 min for whole-body imaging, demonstrating efficient and reliable metastatic cancer detection at 3T.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Renales , Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Imagen de Cuerpo Entero/métodos , Tejido Adiposo/diagnóstico por imagen , Adulto , Anciano , Agua Corporal/diagnóstico por imagen , Femenino , Humanos , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Relación Señal-Ruido
17.
J Magn Reson Imaging ; 48(4): 1104-1111, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30218576

RESUMEN

BACKGROUND: The 3D short tau inversion recovery (STIR) sequence is routinely used in clinical MRI to achieve robust fat suppression. However, the performance of the commonly used adiabatic inversion pulse, hyperbolic secant (HS), is compromised in challenging areas with increased B0 and B1 inhomogeneities, such as brachial plexus at 3T. PURPOSE: To demonstrate the frequency offset corrected inversion (FOCI) pulse as an efficient fat suppression STIR pulse with increased robustness to B0 and B1 inhomogeneities at 3T, compared to the HS pulse. STUDY TYPE: Prospective. SUBJECTS/PHANTOM: Initial evaluation was performed in phantoms and one healthy volunteer by varying the B1 field, while subsequent comparison was performed in three healthy volunteers and five patients without varying the B1 . FIELD STRENGTH/SEQUENCE: 3T; 3D TSE-STIR with HS and FOCI pulses. ASSESSMENT: Brachial plexus images were qualitatively evaluated by two musculoskeletal radiologists independently using a four-point grading scale for fat suppression, shading artifacts, and nerve visualization. STATISTICAL TEST: The Wilcoxon signed-rank test with P < 0.05 was considered statistically significant. RESULTS: Simulations and phantom experiments demonstrated broader bandwidth (2.5 kHz vs. 0.83 kHz, increased B0 robustness) at the same adiabatic threshold and lower adiabatic threshold (5 µT vs. 7 µT at 3.5 ppm, increased B1 robustness) at the same bandwidth with the FOCI pulse compared to the HS pulse With increased bandwidth, the FOCI pulse achieved robust fat suppression even at 50% of maximum B1 strength, while the HS pulse required >75% of maximum B1 strength. Compared to the standard 3D TSE-STIR with HS pulse, the FOCI pulse achieved uniform fat suppression (P < 0.05), better nerve visualization (P < 0.05), and minimal shading artifacts (P < 0.01) in brachial plexus at 3T. DATA CONCLUSION: The FOCI pulse has increased robustness to B0 and B1 inhomogeneities, compared to the HS pulse, and enables uniform fat suppression in brachial plexus at 3T. LEVEL OF EVIDENCE: 1 Techinical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;48:1104-1111.


Asunto(s)
Plexo Braquial/diagnóstico por imagen , Imagen por Resonancia Magnética , Neuroimagen , Tejido Adiposo/diagnóstico por imagen , Adulto , Artefactos , Simulación por Computador , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Variaciones Dependientes del Observador , Fantasmas de Imagen , Radiología
18.
Eur Radiol ; 28(2): 698-707, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28710579

RESUMEN

Magnetic resonance neurography (also called MRN or MR neurography) refers to MR imaging dedicated to the peripheral nerves. It is a technique that enhances selective multiplanar visualisation of the peripheral nerve and pathology by encompassing a combination of two-dimensional, three-dimensional and diffusion imaging pulse sequences. Referring physicians who seek imaging techniques that can depict and diagnose peripheral nerve pathologies superior to conventional MR imaging are driving the demand for MRN. This article reviews the pathophysiology of peripheral nerves in common practice scenarios, technical considerations of MRN, current indications of MRN, normal and abnormal neuromuscular appearances, and imaging pitfalls. Finally, the emerging utility of diffusion-weighted and diffusion tensor imaging is discussed and future directions are highlighted. KEY POINTS: • Lesion relationship to neural architecture is more conspicuous on MRN than MRI. • 3D multiplanar imaging technique is essential for pre-surgical planning. • Nerve injuries can be classified on MRN using Sunderland's classification. • DTI provides quantitative information and insight into intraneural integrity and pathophysiology.


Asunto(s)
Imagen de Difusión Tensora/métodos , Imagenología Tridimensional , Nervios Periféricos/patología , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Humanos
19.
Eur Radiol ; 28(1): 124-132, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28681074

RESUMEN

OBJECTIVES: To apply a statistical clustering algorithm to combine information from dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) into a single tumour map to distinguish high-grade from low-grade T1b clear cell renal cell carcinoma (ccRCC). METHODS: This prospective, Institutional Review Board -approved, Health Insurance Portability and Accountability Act -compliant study included 18 patients with solid T1b ccRCC who underwent pre-surgical DCE MRI. After statistical clustering of the parametric maps of the transfer constant between the intravascular and extravascular space (K trans ), rate constant (K ep ) and initial area under the concentration curve (iAUC) with a fuzzy c-means (FCM) algorithm, each tumour was segmented into three regions (low/medium/high active areas). Percentages of each region and tumour size were compared to tumour grade at histopathology. A decision-tree model was constructed to select the best parameter(s) to predict high-grade ccRCC. RESULTS: Seven high-grade and 11 low-grade T1b ccRCCs were included. High-grade histology was associated with higher percent high active areas (p = 0.0154) and this was the only feature selected by the decision tree model, which had a diagnostic performance of 78% accuracy, 86% sensitivity, 73% specificity, 67% positive predictive value and 89% negative predictive value. CONCLUSIONS: The FCM integrates multiple DCE-derived parameter maps and identifies tumour regions with unique pharmacokinetic characteristics. Using this approach, a decision tree model using criteria beyond size to predict tumour grade in T1b ccRCCs is proposed. KEY POINTS: • Tumour size did not correlate with tumour grade in T1b ccRCC. • Tumour heterogeneity can be analysed using statistical clustering via DCE-MRI parameters. • High-grade ccRCC has a larger percentage of high active area than low-grade ccRCCs. • A decision-tree model offers a simple way to differentiate high/low-grade ccRCCs.


Asunto(s)
Carcinoma de Células Renales/patología , Medios de Contraste , Árboles de Decisión , Aumento de la Imagen/métodos , Neoplasias Renales/patología , Imagen por Resonancia Magnética/métodos , Algoritmos , Área Bajo la Curva , Carcinoma de Células Renales/diagnóstico por imagen , Femenino , Humanos , Neoplasias Renales/diagnóstico por imagen , Imagen por Resonancia Magnética/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estudios Prospectivos , Sensibilidad y Especificidad
20.
Radiology ; 283(2): 538-546, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28005489

RESUMEN

Purpose To develop and evaluate magnetic resonance (MR) neurography of the brachial plexus with robust fat and blood suppression for increased conspicuity of nerves at 3.0 T in clinically feasible acquisition times. Materials and Methods This prospective study was HIPAA compliant, with institutional review board approval and written informed consent. A low-refocusing-flip-angle three-dimensional (3D) turbo spin-echo (TSE) sequence was modified to acquire both in-phase and out-of-phase echoes, required for chemical shift (Dixon) reconstruction, in the same repetition by using partial echoes combined with modified homodyne reconstruction with phase preservation. This multiecho TSE modified Dixon (mDixon) sequence was optimized by using simulations and phantom studies and in three healthy volunteers. The sequence was tested in five healthy volunteers and was evaluated in 10 patients who had been referred for brachial plexopathy at 3.0 T. The images were evaluated against the current standard of care, images acquired with a 3D TSE short inversion time inversion recovery (STIR) sequence, qualitatively by using the Wilcoxon signed-rank test and quantitatively by using the Friedman two-way analysis of variance, with P < .05 considered to indicate a statistically significant difference. Results Multiecho TSE-mDixon involving partial-echo and homodyne reconstruction with phase preservation achieved uniform fat suppression in half the imaging time compared with multiacquisition TSE-mDixon. Compared with 3D TSE STIR, fat suppression, venous suppression, and nerve visualization were significantly improved (P < .05), while arterial suppression was better but not significantly so (P = .06), with increased apparent signal-to-noise ratio in the dorsal nerve root ganglion and C6 nerve (P < .001) with the multiecho TSE-mDixon sequence. Conclusion The multiecho 3D TSE-mDixon sequence provides robust fat and blood suppression, resulting in increased conspicuity of the nerves, in clinically feasible imaging times and can be used for MR neurography of the brachial plexus at 3.0 T. © RSNA, 2016 Online supplemental material is available for this article.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Sangre , Plexo Braquial/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Neurorradiografía/métodos , Técnica de Sustracción , Tejido Adiposo/anatomía & histología , Adulto , Plexo Braquial/anatomía & histología , Femenino , Humanos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA