Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell ; 41(4): 432-44, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21329881

RESUMEN

ER-associated degradation (ERAD) is an ER quality-control process that eliminates terminally misfolded proteins. ERdj5 was recently discovered to be a key ER-resident PDI family member protein that accelerates ERAD by reducing incorrect disulfide bonds in misfolded glycoproteins recognized by EDEM1. We here solved the crystal structure of full-length ERdj5, thereby revealing that ERdj5 contains the N-terminal J domain and six tandem thioredoxin domains that can be divided into the N- and C-terminal clusters. Our systematic biochemical analyses indicated that two thioredoxin domains that constitute the C-terminal cluster form the highly reducing platform that interacts with EDEM1 and reduces EDEM1-recruited substrates, leading to their facilitated degradation. The pulse-chase experiment further provided direct evidence for the sequential movement of an ERAD substrate from calnexin to the downstream EDEM1-ERdj5 complex, and then to the retrotranslocation channel, probably through BiP. We present a detailed molecular view of how ERdj5 mediates ERAD in concert with EDEM1.


Asunto(s)
Retículo Endoplásmico/enzimología , Proteínas del Choque Térmico HSP40/química , Chaperonas Moleculares/química , Proteína Disulfuro Reductasa (Glutatión)/química , Animales , Células Cultivadas , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformación Proteica , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Pliegue de Proteína , Transducción de Señal , Transfección
2.
Proc Natl Acad Sci U S A ; 113(41): E6055-E6063, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27694578

RESUMEN

Calcium ion (Ca2+) is an important second messenger that regulates numerous cellular functions. Intracellular Ca2+ concentration ([Ca2+]i) is strictly controlled by Ca2+ channels and pumps on the endoplasmic reticulum (ER) and plasma membranes. The ER calcium pump, sarco/endoplasmic reticulum calcium ATPase (SERCA), imports Ca2+ from the cytosol into the ER in an ATPase activity-dependent manner. The activity of SERCA2b, the ubiquitous isoform of SERCA, is negatively regulated by disulfide bond formation between two luminal cysteines. Here, we show that ERdj5, a mammalian ER disulfide reductase, which we reported to be involved in the ER-associated degradation of misfolded proteins, activates the pump function of SERCA2b by reducing its luminal disulfide bond. Notably, ERdj5 activated SERCA2b at a lower ER luminal [Ca2+] ([Ca2+]ER), whereas a higher [Ca2+]ER induced ERdj5 to form oligomers that were no longer able to interact with the pump, suggesting [Ca2+]ER-dependent regulation. Binding Ig protein, an ER-resident molecular chaperone, exerted a regulatory role in the oligomerization by binding to the J domain of ERdj5. These results identify ERdj5 as one of the master regulators of ER calcium homeostasis and thus shed light on the importance of cross talk among redox, Ca2+, and protein homeostasis in the ER.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Homeostasis , Chaperonas Moleculares/metabolismo , Oxidación-Reducción , Animales , Señalización del Calcio , Línea Celular , Activación Enzimática , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Humanos , Ratones , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Unión Proteica , Multimerización de Proteína , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Recombinantes , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
3.
Structure ; 25(6): 846-857.e4, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28479060

RESUMEN

ERdj5, composed of an N-terminal J domain followed by six thioredoxin-like domains, is the largest protein disulfide isomerase family member and functions as an ER-localized disulfide reductase that enhances ER-associated degradation (ERAD). Our previous studies indicated that ERdj5 comprises two regions, the N- and C-terminal clusters, separated by a linker loop and with distinct functional roles in ERAD. We here present a new crystal structure of ERdj5 with a largely different cluster arrangement relative to that in the original crystal structure. Single-molecule observation by high-speed atomic force microscopy visualized rapid cluster movement around the flexible linker loop, indicating the highly dynamic nature of ERdj5 in solution. ERdj5 mutants with a fixed-cluster orientation compromised the ERAD enhancement activity, likely because of less-efficient reduction of aberrantly formed disulfide bonds and prevented substrate transfer in the ERdj5-mediated ERAD pathway. We propose a significant role of ERdj5 conformational dynamics in ERAD of disulfide-linked oligomers.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Cristalografía por Rayos X , Disulfuros/química , Disulfuros/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas del Choque Térmico HSP40/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Microscopía de Fuerza Atómica , Modelos Moleculares , Chaperonas Moleculares/genética , Mutación , Conformación Proteica
4.
Sci Rep ; 3: 2456, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23949117

RESUMEN

The mammalian endoplasmic reticulum (ER) harbors disulfide bond-generating enzymes, including Ero1α and peroxiredoxin 4 (Prx4), and nearly 20 members of the protein disulfide isomerase family (PDIs), which together constitute a suitable environment for oxidative protein folding. Here, we clarified the Prx4 preferential recognition of two PDI family proteins, P5 and ERp46, and the mode of interaction between Prx4 and P5 thioredoxin domain. Detailed analyses of oxidative folding catalyzed by the reconstituted Prx4-PDIs pathways demonstrated that, while P5 and ERp46 are dedicated to rapid, but promiscuous, disulfide introduction, PDI is an efficient proofreader of non-native disulfides. Remarkably, the Prx4-dependent formation of native disulfide bonds was accelerated when PDI was combined with ERp46 or P5, suggesting that PDIs work synergistically to increase the rate and fidelity of oxidative protein folding. Thus, the mammalian ER seems to contain highly systematized oxidative networks for the efficient production of large quantities of secretory proteins.


Asunto(s)
Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/metabolismo , Sitios de Unión , Células HEK293 , Humanos , Oxidación-Reducción , Peroxirredoxinas/ultraestructura , Unión Proteica , Proteína Disulfuro Isomerasas/ultraestructura , Pliegue de Proteína
5.
J Biol Chem ; 283(50): 35042-52, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18945679

RESUMEN

The sigma(E) pathway of extracytoplasmic stress responses in Escherichia coli is activated through sequential cleavages of the anti-sigma(E) protein, RseA, by membrane proteases DegS and RseP. Without the first cleavage by DegS, RseP is unable to cleave full-length RseA. We previously showed that a PDZ-like domain in the RseP periplasmic region is essential for this negative regulation of RseP. We now isolated additional deregulated RseP mutants. Many of the mutations affected a periplasmic region that is N-terminal to the previously defined PDZ domain. We expressed these regions and determined their crystal structures. Consistent with a recent prediction, our results indicate that RseP has tandem, circularly permutated PDZ domains (PDZ-N and PDZ-C). Strikingly, almost all the strong mutations have been mapped around the ligand binding cleft region in PDZ-N. These results together with those of an in vitro reaction reproducing the two-step RseA cleavage suggest that the proteolytic function of RseP is controlled by ligand binding to PDZ-N.


Asunto(s)
Endopeptidasas/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Proteínas de la Membrana/química , Cristalografía por Rayos X/métodos , Endopeptidasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Histidina/química , Ligandos , Proteínas de la Membrana/metabolismo , Modelos Genéticos , Modelos Moleculares , Conformación Molecular , Mutación , Periplasma/metabolismo , Plásmidos/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA