Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Development ; 151(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38940461

RESUMEN

The vertebral column is a characteristic structure of vertebrates. Genetic studies in mice have shown that Hox-mediated patterning plays a key role in specifying discrete anatomical regions of the vertebral column. Expression pattern analyses in several vertebrate embryos have provided correlative evidence that the anterior boundaries of Hox expression coincide with distinct anatomical vertebrae. However, because functional analyses have been limited to mice, it remains unclear which Hox genes actually function in vertebral patterning in other vertebrates. In this study, various zebrafish Hox mutants were generated for loss-of-function phenotypic analysis to functionally decipher the Hox code responsible for the zebrafish anterior vertebrae between the occipital and thoracic vertebrae. We found that Hox genes in HoxB- and HoxC-related clusters participate in regulating the morphology of the zebrafish anterior vertebrae. In addition, medaka hoxc6a was found to be responsible for anterior vertebral identity, as in zebrafish. Based on phenotypic similarities with Hoxc6 knockout mice, our results suggest that the Hox patterning system, including at least Hoxc6, may have been functionally established in the vertebral patterning of the common ancestor of ray-finned and lobe-finned fishes.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Columna Vertebral , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/embriología , Columna Vertebral/embriología , Tipificación del Cuerpo/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Genes Homeobox/genética , Oryzias/genética , Oryzias/embriología , Ratones
2.
Proc Natl Acad Sci U S A ; 121(25): e2403809121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38861596

RESUMEN

The dorsal and anal fins can vary widely in position and length along the anterior-posterior axis in teleost fishes. However, the molecular mechanisms underlying the diversification of these fins remain unknown. Here, we used genetic approaches in zebrafish and medaka, in which the relative positions of the dorsal and anal fins are opposite, to demonstrate the crucial role of hox genes in the patterning of the teleost posterior body, including the dorsal and anal fins. By the CRISPR-Cas9-induced frameshift mutations and positional cloning of spontaneous dorsalfinless medaka, we show that various hox mutants exhibit the absence of dorsal or anal fins, or a stepwise posterior extension of these fins, with vertebral abnormalities. Our results indicate that multiple hox genes, primarily from hoxc-related clusters, encompass the regions responsible for the dorsal and anal fin formation along the anterior-posterior axis. These results further suggest that shifts in the anterior boundaries of hox expression which vary among fish species, lead to diversification in the position and size of the dorsal and anal fins, similar to how modulations in Hox expression can alter the number of anatomically distinct vertebrae in tetrapods. Furthermore, we show that hox genes responsible for dorsal fin formation are different between zebrafish and medaka. Our results suggest that a novel mechanism has occurred during teleost evolution, in which the gene network responsible for fin formation might have switched to the regulation downstream of other hox genes, leading to the remarkable diversity in the dorsal fin position.


Asunto(s)
Aletas de Animales , Genes Homeobox , Proteínas de Homeodominio , Oryzias , Pez Cebra , Animales , Oryzias/genética , Pez Cebra/genética , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Tipificación del Cuerpo/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
3.
Plant Cell ; 35(12): 4366-4382, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37757885

RESUMEN

The stem, consisting of nodes and internodes, is the shoot axis, which supports aboveground organs and connects them to roots. In contrast to other organs, developmental processes of the stem remain elusive, especially those initiating nodes and internodes. By introducing an intron into the Cre recombinase gene, we established a heat shock-inducible clonal analysis system in a single binary vector and applied it to the stem in the flag leaf phytomer of rice (Oryza sativa). With detailed characterizations of stem structure and development, we show that cell fate acquisition for each domain of the stem occurs stepwise. Cell fate for a single phytomer was established in the shoot apical meristem (SAM) by one plastochron before leaf initiation. Cells destined for the foot (nonelongating domain at the stem base) also started emerging before leaf initiation. Cell fate acquisition for the node began just before leaf initiation at the flank of the SAM, separating cell lineages for leaves and stems. Subsequently, cell fates for the axillary bud were established in early leaf primordia. Finally, cells committed to the internode emerged from, at most, a few cell tiers of the 12- to 25-cell stage stem epidermis. Thus, internode cell fate is established last during stem development. This study provides the groundwork to unveil underlying molecular mechanisms in stem development and a valuable tool for clonal analysis, which can be applied to various species.


Asunto(s)
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Diferenciación Celular , Meristema , Hojas de la Planta/metabolismo , Respuesta al Choque Térmico/genética , Regulación de la Expresión Génica de las Plantas/genética
4.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34096572

RESUMEN

Vertebrate Hox clusters are comprised of multiple Hox genes that control morphology and developmental timing along multiple body axes. Although results of genetic analyses using Hox-knockout mice have been accumulating, genetic studies in other vertebrates have not been sufficient for functional comparisons of vertebrate Hox genes. In this study, we isolated all of the seven hox cluster loss-of-function alleles in zebrafish using the CRISPR-Cas9 system. Comprehensive analysis of the embryonic phenotype and X-ray micro-computed tomography scan analysis of adult fish revealed several species-specific functional contributions of homologous Hox clusters along the appendicular axis, whereas important shared general principles were also confirmed, as exemplified by serial anterior vertebral transformations along the main body axis, observed in fish for the first time. Our results provide insights into discrete sub/neofunctionalization of vertebrate Hox clusters after quadruplication of the ancient Hox cluster. This set of seven complete hox cluster loss-of-function alleles provide a formidable resource for future developmental genetic analysis of the Hox patterning system in zebrafish.


Asunto(s)
Genes Homeobox/genética , Familia de Multigenes , Pez Cebra/genética , Pez Cebra/fisiología , Animales , Sistemas CRISPR-Cas , Desarrollo Embrionario/genética , Evolución Molecular , Femenino , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Masculino , Mutación , Esqueleto/anatomía & histología , Esqueleto/crecimiento & desarrollo , Especificidad de la Especie , Microtomografía por Rayos X , Pez Cebra/embriología
5.
J Theor Biol ; 575: 111650, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37884223

RESUMEN

The three-dimensional (3D) morphologies of many organs in organisms, such as the curved shapes of leaves and flowers, the branching structure of lungs, and the exoskeletal shape of insects, are formed through surface growth. Although differential growth, a mode of surface growth, has been qualitatively identified as 3D morphogenesis, a quantitative understanding of the mechanical contribution of differential growth is lacking. To address this, we developed a quantitative inference method to analyze the distribution of the area expansion rate, which governs the growth of surfaces into 3D morphology. To validate the accuracy of our method, we tested it on a basic 3D morphology that allowed for the theoretical derivation of the area expansion rate distribution, and then assessed the difference between the predicted outcome and the theoretical solution. We also applied this method to complex 3D shapes and evaluated its accuracy through numerical experiments. The findings of the study revealed a linear decrease in error on a log-log scale with an increase in the number of meshes in both evaluations. This affirmed the reliability of the predictions for meshes that are sufficiently refined. Moreover, we employed our methodology to analyze the developmental process of the Japanese rhinoceros beetle Trypoxylus dichotomus, which is characterized by differential growth regulating 3D morphogenesis. The results indicated a notably high rate of area expansion on the left and right edges of the horn primordium, which is consistent with the experimental evidence of a higher rate of cell division in these regions. Hence, these findings confirm the efficacy of the proposed method in analyzing biological systems.


Asunto(s)
Escarabajos , Animales , Reproducibilidad de los Resultados , Morfogénesis , Flores , Hojas de la Planta
6.
Zoolog Sci ; 39(1): 115-123, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35106999

RESUMEN

A new species of the family Splanchnotrophidae Norman and Scott, 1906 (Cyclopoida) is described based on both sexes collected from off the Oki Islands, the Sea of Japan. Specimens of both sexes of Ceratosomicola oki n. sp. were found in the body cavities of Glossodoris misakinosibogae Baba, 1988 (Nudibranchia: Chromodorididae). The copepod is characterized by the following female characters: the cephalosome with a pair of dorsolateral horn-like processes; the prosome with hemispherical posterolateral lobes on the middle region. Non-destructive, micro-computed tomography (micro-CT) imaging performed on a single specimen of the nudibranch revealed a heavy infection by a total 17 specimens of C. oki n. sp. Almost all individuals of the copepod were attached on the surface of the middle to posterior parts of the visceral sac, forming a dense cluster. The four females bearing developed lateral processes on the prosome faced the anterior end of the visceral sac and positioned the posterior tip of the body under the secondary gills of the host. The males fitted in the gaps between the females' bodies. Further, the distribution and shape of the reproductive organs of both sexes were partially clarified by micro-CT imaging.


Asunto(s)
Copépodos , Gastrópodos , Animales , Femenino , Islas , Japón , Masculino , Microtomografía por Rayos X
7.
Proc Natl Acad Sci U S A ; 116(47): 23636-23642, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685615

RESUMEN

Sonic hedgehog (SHH) signaling plays a pivotal role in 2 different phases during brain development. Early SHH signaling derived from the prechordal plate (PrCP) triggers secondary Shh induction in the forebrain, which overlies the PrCP, and the induced SHH signaling, in turn, directs late neuronal differentiation of the forebrain. Consequently, Shh regulation in the PrCP is crucial for initiation of forebrain development. However, no enhancer that regulates prechordal Shh expression has yet been found. Here, we identified a prechordal enhancer, named SBE7, in the vicinity of a cluster of known forebrain enhancers for Shh This enhancer also directs Shh expression in the ventral midline of the forebrain, which receives the prechordal SHH signal. Thus, the identified enhancer acts not only for the initiation of Shh regulation in the PrCP but also for subsequent Shh induction in the forebrain. Indeed, removal of the enhancer from the mouse genome markedly down-regulated the expression of Shh in the rostral domains of the axial mesoderm and in the ventral midline of the forebrain and hypothalamus in the mouse embryo, and caused a craniofacial abnormality similar to human holoprosencephaly (HPE). These findings demonstrate that SHH signaling mediated by the newly identified enhancer is essential for development and growth of the ventral midline of the forebrain and hypothalamus. Understanding of the Shh regulation governed by this prechordal and brain enhancer provides an insight into the mechanism underlying craniofacial morphogenesis and the etiology of HPE.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/fisiología , Proteínas del Tejido Nervioso/fisiología , Prosencéfalo/embriología , Animales , Sistemas CRISPR-Cas , Proteínas del Ojo/fisiología , Técnicas de Inactivación de Genes , Genes Reporteros , Proteínas Hedgehog/biosíntesis , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Proteínas de Homeodominio/fisiología , Hipotálamo/anomalías , Hipotálamo/embriología , Hipotálamo/metabolismo , Operón Lac , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Prosencéfalo/anomalías , Prosencéfalo/metabolismo , Transducción de Señal , Transgenes , Proteína Homeobox SIX3
8.
PLoS Genet ; 15(4): e1008063, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30969957

RESUMEN

Many scarab beetles have sexually dimorphic exaggerated horns that are an evolutionary novelty. Since the shape, number, size, and location of horns are highly diverged within Scarabaeidae, beetle horns are an attractive model for studying the evolution of sexually dimorphic and novel traits. In beetles including the Japanese rhinoceros beetle Trypoxylus dichotomus, the sex differentiation gene doublesex (dsx) plays a crucial role in sexually dimorphic horn formation during larval-pupal development. However, knowledge of when and how dsx drives the gene regulatory network (GRN) for horn formation to form sexually dimorphic horns during development remains elusive. To address this issue, we identified a Trypoxylus-ortholog of the sex determination gene, transformer (tra), that regulates sex-specific splicing of the dsx pre-mRNA, and whose loss of function results in sex transformation. By knocking down tra function at multiple developmental timepoints during larval-pupal development, we estimated the onset when the sex-specific GRN for horn formation is driven. In addition, we also revealed that dsx regulates different aspects of morphogenetic activities during the prepupal and pupal developmental stages to form appropriate morphologies of pupal head and thoracic horn primordia as well as those of adult horns. Based on these findings, we discuss the evolutionary developmental background of sexually dimorphic trait growth in horned beetles.


Asunto(s)
Escarabajos/crecimiento & desarrollo , Escarabajos/genética , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes de Insecto , Cuernos/crecimiento & desarrollo , Proteínas de Insectos/genética , Larva/genética , Larva/crecimiento & desarrollo , Masculino , Fenotipo , Pupa/genética , Pupa/crecimiento & desarrollo , Interferencia de ARN , Caracteres Sexuales , Diferenciación Sexual/genética
9.
Proc Natl Acad Sci U S A ; 115(5): 1021-1026, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29255029

RESUMEN

Acquisition of new cis-regulatory elements (CREs) can cause alteration of developmental gene regulation and may introduce morphological novelty in evolution. Although structural variation in the genome generated by chromosomal rearrangement is one possible source of new CREs, only a few examples are known, except for cases of retrotransposition. In this study, we show the acquisition of novel regulatory sequences as a result of large genomic insertion in the spontaneous mouse mutation Hammer toe (Hm). Hm mice exhibit syndactyly with webbing, due to suppression of interdigital cell death in limb development. We reveal that, in the Hm genome, a 150-kb noncoding DNA fragment from chromosome 14 is inserted into the region upstream of the Sonic hedgehog (Shh) promoter in chromosome 5. Phenotyping of mouse embryos with a series of CRISPR/Cas9-aided partial deletion of the 150-kb insert clearly indicated that two different regions are necessary for the syndactyly phenotype of Hm We found that each of the two regions contains at least one enhancer for interdigital regulation. These results show that a set of enhancers brought by the large genomic insertion elicits the interdigital Shh expression and the Hm phenotype. Transcriptome analysis indicates that ectopic expression of Shh up-regulates Chordin (Chrd) that antagonizes bone morphogenetic protein signaling in the interdigital region. Indeed, Chrd-overexpressing transgenic mice recapitulated syndactyly with webbing. Thus, the Hm mutation provides an insight into enhancer acquisition as a source of creation of novel gene regulation.


Asunto(s)
Elementos de Facilitación Genéticos , Proteínas Hedgehog/genética , Sindactilia/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Ligamiento Genético , Glicoproteínas/genética , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Mutantes , Ratones Transgénicos , Mutagénesis Insercional , Mutación , Fenotipo , Sindactilia/embriología , Sindactilia/metabolismo
10.
Plant J ; 98(3): 465-478, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30657229

RESUMEN

Inflorescence architecture is diverse in angiosperms, and is mainly determined by the arrangement of the branches and flowers, known as phyllotaxy. In rice (Oryza sativa), the main inflorescence axis, called the rachis, generates primary branches in a spiral phyllotaxy, and flowers (spikelets) are formed on these branches. Here, we have studied a classical mutant, named verticillate rachis (ri), which produces branches in a partially whorled phyllotaxy. Gene isolation revealed that RI encodes a BELL1-type homeodomain transcription factor, similar to Arabidopsis PENNYWISE/BELLRINGER/REPLUMLESS, and is expressed in the specific regions within the inflorescence and branch meristems where their descendant meristems would soon initiate. Genetic combination of an ri homozygote and a mutant allele of RI-LIKE1 (RIL1) (designated ri ril1/+ plant), a close paralog of RI, enhanced the ri inflorescence phenotype, including the abnormalities in branch phyllotaxy and rachis internode patterning. During early inflorescence development, the timing and arrangement of primary branch meristem (pBM) initiation were disturbed in both ri and ri ril1/+ plants. These findings suggest that RI and RIL1 were involved in regulating the phyllotactic pattern of the pBMs to form normal inflorescences. In addition, both RI and RIL1 seem to be involved in meristem maintenance, because the ri ril1 double-mutant failed to establish or maintain the shoot apical meristem during embryogenesis.


Asunto(s)
Inflorescencia/embriología , Inflorescencia/metabolismo , Meristema/embriología , Meristema/metabolismo , Oryza/embriología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Inflorescencia/genética , Meristema/genética , Oryza/genética , Proteínas de Plantas/genética
11.
J Anat ; 236(4): 622-629, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31840255

RESUMEN

In the vertebrate body, a metameric structure is present along the anterior-posterior axis. Zebrafish tbx6-/- larvae, in which somite boundaries do not form during embryogenesis, were shown to exhibit abnormal skeletal morphology such as rib, neural arch and hemal arch. In this study, we investigated the role of somite patterning in the formation of anterior vertebrae and ribs in more detail. Using three-dimensional computed tomography scans, we found that anterior vertebrae including the Weberian apparatus were severely affected in tbx6-/- larvae. In addition, pleural ribs of tbx6 mutants exhibited severe defects in the initial ossification, extension of ossification, and formation of parapophyses. Two-colour staining revealed that bifurcation of ribs was caused by fusion or branching of ribs in tbx6-/- . The parapophyses in tbx6-/- juvenile fish showed irregular positioning to centra and abnormal attachment to ribs. Furthermore, we found that the ossification of the distal portion of ribs proceeded along myotome boundaries even in irregularly positioned myotome boundaries. These results provide evidence of the contribution of somite patterning to the formation of the Weberian apparatus and rib in zebrafish.


Asunto(s)
Tipificación del Cuerpo/genética , Costillas/embriología , Somitos/enzimología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Costillas/diagnóstico por imagen , Somitos/diagnóstico por imagen , Proteínas de Dominio T Box/genética , Tomografía Computarizada por Rayos X , Pez Cebra/genética , Proteínas de Pez Cebra/genética
12.
Plant Cell ; 29(5): 1105-1118, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28381444

RESUMEN

Monocot stems lack the vascular cambium and instead have characteristic structures in which intercalary meristems generate internodes and veins remain separate and scattered. However, developmental processes of these unique structures have been poorly described. BELL1-like homeobox (BLH) transcription factors (TFs) are known to heterodimerize with KNOTTED1-like homeobox TFs to play crucial roles in shoot meristem maintenance, but their functions are elusive in monocots. We found that maize (Zea mays) BLH12 and BLH14 have redundant but important roles in stem development. BLH12/14 interact with KNOTTED1 (KN1) in vivo and accumulate in overlapping domains in shoot meristems, young stems, and provascular bundles. Similar to kn1 loss-of-function mutants, blh12 blh14 (blh12/14) double mutants fail to maintain axillary meristems. Unique to blh12/14 is an abnormal tassel branching and precocious internode differentiation that results in dwarfism and reduced veins in stems. Micro-computed tomography observation of vascular networks revealed that blh12/14 double mutants had reduced vein number due to fewer intermediate veins in leaves and precocious anastomosis in young stems. Based on these results, we propose two functions of BLH12/14 during stem development: (1) maintaining intercalary meristems that accumulate KN1 and prevent precocious internode differentiation and (2) preventing precocious anastomosis of provascular bundles in young stems to ensure the production of sufficient independent veins.


Asunto(s)
Proteínas de Plantas/metabolismo , Zea mays/citología , Zea mays/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Meristema/citología , Meristema/genética , Meristema/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Zea mays/genética
13.
BMC Evol Biol ; 18(1): 83, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29879905

RESUMEN

After publication of Nakano et al. (2017) [1], the authors became aware of the fact that the new species-group name erected for the two specimens of a Japanese xenoturbellid species in the article is not available because Nakano et al. (2017) [1] does not meet the requirement of the amendment of Article 8.5.3 of the International Code of Zoological Nomenclature (the Code) [2]. The authors therefore describe the two xenoturbellids as a new species again in this correction article. Methods for morphological observation, DNA extraction and sequencing were as described in Nakano et al. (2017) [1]. The holotype and paratype specimens are deposited in the National Museum of Nature and Science, Tsukuba (NSMT), Japan. The DNA sequences obtained were deposited in the International Nucleotide Sequence Database (INSD).

14.
BMC Evol Biol ; 17(1): 245, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29249199

RESUMEN

BACKGROUND: Xenoturbella is a group of marine benthic animals lacking an anus and a centralized nervous system. Molecular phylogenetic analyses group the animal together with the Acoelomorpha, forming the Xenacoelomorpha. This group has been suggested to be either a sister group to the Nephrozoa or a deuterostome, and therefore it may provide important insights into origins of bilaterian traits such as an anus, the nephron, feeding larvae and centralized nervous systems. However, only five Xenoturbella species have been reported and the evolutionary history of xenoturbellids and Xenacoelomorpha remains obscure. RESULTS: Here we describe a new Xenoturbella species from the western Pacific Ocean, and report a new xenoturbellid structure - the frontal pore. Non-destructive microCT was used to investigate the internal morphology of this soft-bodied animal. This revealed the presence of a frontal pore that is continuous with the ventral glandular network and which exhibits similarities with the frontal organ in acoelomorphs. CONCLUSIONS: Our results suggest that large size, oval mouth, frontal pore and ventral glandular network may be ancestral features for Xenoturbella. Further studies will clarify the evolutionary relationship of the frontal pore and ventral glandular network of xenoturbellids and the acoelomorph frontal organ. One of the habitats of the newly identified species is easily accessible from a marine station and so this species promises to be valuable for research on bilaterian and deuterostome evolution.


Asunto(s)
Evolución Biológica , Invertebrados/anatomía & histología , Animales , Océano Pacífico , Filogenia , Especificidad de la Especie , Microtomografía por Rayos X
15.
Genome Res ; 23(10): 1740-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23878157

RESUMEN

Coelacanths are known as "living fossils," as they show remarkable morphological resemblance to the fossil record and belong to the most primitive lineage of living Sarcopterygii (lobe-finned fishes and tetrapods). Coelacanths may be key to elucidating the tempo and mode of evolution from fish to tetrapods. Here, we report the genome sequences of five coelacanths, including four Latimeria chalumnae individuals (three specimens from Tanzania and one from Comoros) and one L. menadoensis individual from Indonesia. These sequences cover two African breeding populations and two known extant coelacanth species. The genome is ∼2.74 Gbp and contains a high proportion (∼60%) of repetitive elements. The genetic diversity among the individuals was extremely low, suggesting a small population size and/or a slow rate of evolution. We found a substantial number of genes that encode olfactory and pheromone receptors with features characteristic of tetrapod receptors for the detection of airborne ligands. We also found that limb enhancers of bmp7 and gli3, both of which are essential for limb formation, are conserved between coelacanth and tetrapods, but not ray-finned fishes. We expect that some tetrapod-like genes may have existed early in the evolution of primitive Sarcopterygii and were later co-opted to adapt to terrestrial environments. These coelacanth genomes will provide a cornerstone for studies to elucidate how ancestral aquatic vertebrates evolved into terrestrial animals.


Asunto(s)
Adaptación Biológica , Evolución Molecular , Peces/clasificación , Peces/genética , Genoma , África , Animales , Organismos Acuáticos/genética , Secuencia de Bases , Biodiversidad , Proteína Morfogenética Ósea 7/genética , Extremidades/crecimiento & desarrollo , Especiación Genética , Variación Genética , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Filogenia , Receptores Odorantes/genética , Receptores de Feromonas/genética , Análisis de Secuencia de ADN , Vertebrados/clasificación , Vertebrados/genética , Agua
16.
Hum Mol Genet ; 22(12): 2471-81, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23449628

RESUMEN

Partial trisomy distal 4q (denoted 4q+) is a human chromosomal disorder caused by duplication of the distal end of the long arm of chromosome 4 (Chr4). This disorder manifests typical phenotypes, including craniofacial, renal, heart and thumb developmental defects. Although these clinical features are likely caused by a dosage imbalance in the gene network involving the trisomic region, the causative gene or genes and the molecular bases are largely unknown. Here, we report mouse Recombination-induced mutation 4 (Rim4) as a model animal of 4q+. The Rim4 genome contains an insertion of a 6.5 Mb fragment from mouse chromosome 8 into chromosome 6. This insertion fragment contains 17 genes, including Hand2, that encode the basic helix-loop-helix transcription factor and is syntenic to the distal end of human Chr4, 4q32.3 to 4q34.1, which is responsible for 4q+. A comparison of phenotypes between patients with Rim4 and 4q+ revealed that Rim4 shows direct parallels with many phenotypes of 4q+ such as craniofacial, heart, cervical vertebra and limb deformities. Rebalancing the gene dosage by a genetic cross with Hand2 knockout mice ameliorated symptoms of the heart and limb deformities of Rim4. Conversely, an increase in copy number of Hand2 in wild-type mice recaptures the heart and limb deformities of Rim4. Our results collectively demonstrate that overdosage of Hand2 is a major cause for at least the limb and heart phenotypes of 4q+ and that mouse Rim4 provides a unique animal model for understanding the molecular bases underlying the complex phenotypes of 4q+.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Dosificación de Gen , Cardiopatías Congénitas/genética , Deformidades Congénitas de las Extremidades/genética , Trisomía/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/metabolismo , Cromosomas Humanos Par 4/genética , Modelos Animales de Enfermedad , Extremidades/crecimiento & desarrollo , Femenino , Corazón/crecimiento & desarrollo , Cardiopatías Congénitas/metabolismo , Humanos , Deformidades Congénitas de las Extremidades/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
17.
Biochem Biophys Res Commun ; 456(4): 933-7, 2015 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-25511702

RESUMEN

The spectra of phenotypes associated with aging and mitochondrial diseases sometimes appear to overlap with each other. We used aged mice and a mouse model of mitochondrial diseases (transmitochondrial mito-miceΔ with deleted mtDNA) to study whether premature aging phenotypes observed in mtDNA mutator mice are associated with aging or mitochondrial diseases. Here, we provide convincing evidence that all the mice examined had musculoskeletal disorders of osteoporosis and muscle atrophy, which correspond to phenotypes prevalently observed in the elderly. However, precise investigation of musculoskeletal disorders revealed that the spectra of osteoporosis and muscle atrophy phenotypes in mtDNA mutator mice were very close to those in mito-miceΔ, but different from those of aged mice. Therefore, mtDNA mutator mice and mito-miceΔ, but not aged mice, share the spectra of musculoskeletal disorders.


Asunto(s)
Envejecimiento/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Enfermedades Musculoesqueléticas/genética , Mutación/genética , Animales , Modelos Animales de Enfermedad , Imagenología Tridimensional , Ratones , Atrofia Muscular/patología , Osteoporosis/patología , Fenotipo , Tibia/patología
18.
Biom J ; 56(4): 697-719, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24740424

RESUMEN

This paper presents systematic methods for the detection of influential individuals that affect the log odds (LOD) score curve. We derive general formulas of influence functions for profile likelihoods and introduce them into two standard quantitative trait locus detection methods-the interval mapping method and single marker analysis. Besides influence analysis on specific LOD scores, we also develop influence analysis methods on the shape of the LOD score curves. A simulation-based method is proposed to assess the significance of the influence of the individuals. These methods are shown useful in the influence analysis of a real dataset of an experimental population from an F2 mouse cross. By receiver operating characteristic analysis, we confirm that the proposed methods show better performance than existing diagnostics.


Asunto(s)
Biometría/métodos , Mapeo Cromosómico/métodos , Sitios de Carácter Cuantitativo/genética , Animales , Cromosomas de los Mamíferos/genética , Funciones de Verosimilitud , Ratones , Modelos Estadísticos , Curva ROC
19.
Plant Direct ; 8(7): e619, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38962171

RESUMEN

Plant galls generated by insects have highly organized structures, providing nutrients and shelter to the insects living within them. Most research on the physiological and molecular mechanisms of gall development has focused on single galls. To understand the diversity of gall development, we examined five galls with different morphologies generated by distinct species of Rhopalomyia (gall midge; Diptera: Cecidomyiidae) on a single host plant of Artemisia indica var. maximowiczii (Asteraceae). Vasculature developed de novo within the galls, indicating active transport of nutrients between galls and the host plant. Each gall had a different pattern of vasculature and lignification, probably due to differences in the site of gall generation and the gall midge species. Transcriptome analysis indicated that photosynthetic and cell wall-related genes were down-regulated in leaf and stem galls, respectively, compared with control leaf and stem tissues, whereas genes involved in floral organ development were up-regulated in all types of galls, indicating that transformation from source to sink organs occurs during gall development. Our results help to understand the diversity of galls on a single herbaceous host plant.

20.
Science ; 384(6701): 1241-1247, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38870308

RESUMEN

Plant stems comprise nodes and internodes that specialize in solute exchange and elongation. However, their boundaries are not well defined, and how these basic units arise remains elusive. In rice with clear nodes and internodes, we found that one subclade of class I knotted1-like homeobox (KNOX1) genes for shoot meristem indeterminacy restricts node differentiation and allows internode formation by repressing YABBY genes for leaf development and genes from another node-specific KNOX1 subclade. YABBYs promote nodal vascular differentiation and limit stem elongation. YABBY and node-specific KNOX1 genes specify the pulvinus, which further elaborates the nodal structure for gravitropism. Notably, this KNOX1 subclade organization is specific to seed plants. We propose that nodes and internodes are distinct domains specified by YABBY-KNOX1 cross-regulation that diverged in early seed plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio , Meristema , Oryza , Proteínas de Plantas , Tallos de la Planta , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Oryza/genética , Oryza/crecimiento & desarrollo , Gravitropismo/genética , Hojas de la Planta/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Genes de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA