RESUMEN
CUB domain-containing protein 1 (CDCP1) is an oncogenic orphan transmembrane receptor and a promising target for the detection and treatment of cancer. Extracellular proteolysis of CDCP1 by poorly defined mechanisms induces pro-metastatic signaling. We describe a new approach for the rapid identification of proteases responsible for key proteolytic events using a substrate-biased activity-based probe (sbABP) that incorporates a substrate cleavage motif grafted onto a peptidyl diphenyl phosphonate warhead for specific target protease capture, isolation and identification. Using a CDCP1-biased probe, we identify urokinase (uPA) as the master regulator of CDCP1 proteolysis, which acts both by directly cleaving CDCP1 and by activating CDCP1-cleaving plasmin. We show that coexpression of uPA and CDCP1 is strongly predictive of poor disease outcome across multiple cancers and demonstrate that uPA-mediated CDCP1 proteolysis promotes metastasis in disease-relevant preclinical in vivo models. These results highlight CDCP1 cleavage as a potential target to disrupt cancer and establish sbABP technology as a new approach to identify disease-relevant proteases.
Asunto(s)
Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/metabolismo , Péptido Hidrolasas/análisis , Animales , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Estructura Molecular , Péptido Hidrolasas/metabolismo , Especificidad por SustratoRESUMEN
INTRODUCTION: Human herpes simplex virus 1 (HSV1) is discussed to induce amyloid-ß (Aß) accumulation and neurofibrillary tangles of hyperphosphorylated tau (pTau) in Alzheimer's disease (AD) in cell culture and animal models. Aß appears to be virostatic. We investigated the association between intrathecal antibodies against HSV or cytomegalovirus (CMV) and cerebrospinal fluid (CSF) AD biomarkers. METHODS: Aß42 /Aß40 ratio, pTau, and tTau were measured in CSF of 117 patients with early AD positive for amyloid pathology (A+) and 30 healthy controls (A-). CSF-to-serum anti-HSV1/2-IgG antibody indices (AI-IgGHSV1/2 ) and CMV (AI-IgGCMV ) were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS: Exclusively in HSV1-seropositive AD, pTau was positively and significantly predicted by AI-IgGHSV1/2 and negatively by the Aß42 /Aß40 ratio in both univariate and multivariate regression analyses. Furthermore, a significant and negative interaction between the AI-IgGHSV1/2 and Aß42 /Aß40 ratio on pTau was found. DISCUSSION: The results support the hypothesis that HSV infection contributes to AD. HIGHLIGHTS: HSV antibody index is positively associated with tau pathology in patients with AD. HSV antibody index is negatively associated with cerebral FDG metabolism. Amyloid modulates the association of HSV antibody index with CSF-pTau. HSV in AD offers a pathophysiological model connecting tau and amyloid.
Asunto(s)
Enfermedad de Alzheimer , Infecciones por Citomegalovirus , Herpes Simple , Herpesvirus Humano 1 , Animales , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Inmunoglobulina G , Biomarcadores/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeoRESUMEN
BACKGROUND: Response to immune checkpoint blockade (ICB) in ovarian cancer remains disappointing. Several studies have identified the chemokine CXCL9 as a robust prognosticator of improved survival in ovarian cancer and a characteristic of the immunoreactive subtype, which predicts ICB response. However, the function of CXCL9 in ovarian cancer has been poorly studied. METHODS: Impact of Cxcl9 overexpression in the murine ID8-Trp53-/- and ID8-Trp53-/-Brca2-/- ovarian cancer models on survival, cellular immune composition, PD-L1 expression and anti-PD-L1 therapy. CXCL9 expression analysis in ovarian cancer subtypes and correlation to reported ICB response. RESULTS: CXCL9 overexpression resulted in T-cell accumulation, delayed ascites formation and improved survival, which was dependent on adaptive immune function. In the ICB-resistant mouse model, the chemokine was sufficient to enable a successful anti-PD-L1 therapy. In contrast, these effects were abrogated in Brca2-deficient tumours, most likely due to an already high intrinsic chemokine expression. Finally, in ovarian cancer patients, the clear-cell subtype, known to respond best to ICB, displayed a significantly higher proportion of CXCL9high tumours than the other subtypes. CONCLUSIONS: CXCL9 is a driver of successful ICB in preclinical ovarian cancer. Besides being a feasible predictive biomarker, CXCL9-inducing agents thus represent attractive combination partners to improve ICB in this cancer entity.
Asunto(s)
Antígeno B7-H1 , Quimiocina CXCL9 , Inhibidores de Puntos de Control Inmunológico , Neoplasias Ováricas , Animales , Antígeno B7-H1/antagonistas & inhibidores , Quimiocina CXCL9/genética , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genéticaRESUMEN
BACKGROUND: The small GTP-binding protein Rab31 plays an important role in the modulation of tumor biological-relevant processes, including cell proliferation, adhesion, and invasion. As an underlying mechanism, Rab31 is presumed to act as a molecular switch between a more proliferative and an invasive phenotype. This prompted us to analyze whether Rab31 overexpression in breast cancer cells affects expression of genes involved in epithelial-to-mesenchymal transition (EMT)-like processes when compared to Rab31 low-expressing cells. METHODS: Commercially available profiler PCR arrays were applied to search for differentially expressed genes in Rab31 high- and low-expressing CAMA-1 breast cancer cells. Differential expression of selected candidate genes in response to Rab31 overexpression in CAMA-1 cells was validated by independent qPCR and protein assays. RESULTS: Gene expression profiling of key genes involved in EMT, or its reciprocal process MET, identified 9 genes being significantly up- or down-regulated in Rab31 overexpressing CAMA-1 cells, with the strongest effects seen for TGFB1, encoding TGF-ß1 (> 25-fold down-regulation in Rab31 overexpressing cells). Subsequent validation analyses by qPCR revealed a strong down-regulation of TGFB1 mRNA levels in response to increased Rab31 expression not only in CAMA-1 cells, but also in another breast cancer cell line, MDA-MB-231. Using ELISA and Western blot analysis, a considerable reduction of both intracellular and secreted TGF-ß1 antigen levels was determined in Rab31 overexpressing cells compared to vector control cells. Furthermore, reduced TGF-ß activity was observed upon Rab31 overexpression in CAMA-1 cells using a sensitive TGF-ß bioassay. Finally, the relationship between Rab31 expression and the TGF-ß axis was analyzed by another profiler PCR array focusing on genes involved in TGF-ß signaling. We found 12 out of 84 mRNAs significantly reduced and 7 mRNAs significantly increased upon Rab31 overexpression. CONCLUSIONS: Our results demonstrate that Rab31 is a potent modulator of the expression of TGF-ß and other components of the TGF-ß signaling pathway in breast cancer cells.
Asunto(s)
Neoplasias de la Mama/genética , Transición Epitelial-Mesenquimal/genética , Factor de Crecimiento Transformador beta1/genética , Proteínas de Unión al GTP rab/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas de Unión al GTP rab/metabolismoRESUMEN
Despite the concerning adverse effects on tumour development, epigenetic drugs are very promising in cancer treatment. The aim of this study was to compare the differential effects of standard chemotherapy regimens (FEC: 5-fluorouracil plus epirubicine plus cyclophosphamide) in combination with epigenetic modulators (decitabine, valproic acid): (a) on gene methylation levels of selected tumour biomarkers (LINE-1, uPA, PAI-1, DAPK); (b) their expression status (uPA and PAI-1); (c) differentiation status (5meC and H3K27me3). Furthermore, cell survival as well as changes concerning the invasion capacity were monitored in cell culture models of breast cancer (MCF-7, MDA-MB-231). A significant overall decrease of cell survival was observed in the FEC-containing combination therapies for both cell lines. Methylation results showed a general tendency towards increased demethylation of the uPA and PAI-1 gene promoters for the MCF-7 cells, as well as the proapoptotic DAPK gene in the treatment regimens for both cell lines. The uPA and PAI-1 antigen levels were mainly increased in the supernatant of FEC-only treated MDA-MB-231 cells. DAC-only treatment induced an increase of secreted uPA protein in MCF-7 cell culture, while most of the VPA-containing regimens also induced uPA and PAI-1 expression in MCF-7 cell fractions. Epigenetically active substances can also induce a re-differentiation in tumour cells, as shown by 5meC, H3K27me3 applying ICC. SIGNIFICANCE OF THE STUDY: Epigenetic modulators especially in the highly undifferentiated and highly malignant MDA-MB-231 tumour cells significantly reduced tumour malignancy thus; further clinical studies applying specific combination therapies with epigenetic modulators may be warranted.
Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Decitabina/farmacología , Epigénesis Genética/efectos de los fármacos , Ácido Valproico/farmacología , Antimetabolitos Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Decitabina/química , Ensayos de Selección de Medicamentos Antitumorales , Epigénesis Genética/genética , Femenino , Humanos , Células Tumorales Cultivadas , Ácido Valproico/químicaRESUMEN
Kallikrein-related peptidase 7 (KLK7) is a serine peptidase that is over expressed in ovarian cancer. In vitro functional analyses have suggested KLK7 to play a cancer progressive role, although monitoring of KLK7 expression has suggested a contradictory protective role for KLK7 in ovarian cancer patients. In order to help delineate its mechanism of action and thereby the functional roles, information on its substrate repertoire is crucial. Therefore, in this study a quantitative proteomics approach-PROtein TOpography and Migration Analysis Platform (PROTOMAP)-coupled with SILAC was used for in-depth analysis of putative KLK7 substrates from a representative ovarian cancer cell line, SKOV-3, secreted proteins. The Terminal Amine Isotopic Labeling of Substrates (TAILS) approach was used to determine the exact cleavage sites and to validate qPROTOMAP-identified putative substrates. By employing these two technically divergent approaches, exact cleavage sites on 16 novel putative substrates and two established substrates, matrix metalloprotease (MMP) 2 and insulin growth factor binding protein 3 (IGFBP3), were identified in the SKOV-3 secretome. Eight of these substrates were also identified on TAILS analysis of another ovarian cancer cell (OVMZ-6) secretome, with a further seven OVMZ-6 substrates common to the SKOV-3 qPROTOMAP profile. Identified substrates were significantly associated with the common processes of cell adhesion, extracellular matrix remodeling and cell migration according to the gene ontology (GO) biological process analysis. Biochemical validation supports a role for KLK7 in directly activating pro-MMP10, hydrolysis of IGFBP6 and cleavage of thrombospondin 1 with generation of a potentially bioactive N-terminal fragment. Overall, this study constitutes the most comprehensive analysis of the putative KLK7 degradome in any cancer to date, thereby opening new avenues for KLK7 research.
Asunto(s)
Calicreínas/metabolismo , Neoplasias Ováricas/metabolismo , Proteolisis , Proteoma/metabolismo , Proteómica , Secuencia de Aminoácidos , Línea Celular Tumoral , Quimotripsina/metabolismo , Medios de Cultivo Condicionados/farmacología , Activación Enzimática/efectos de los fármacos , Femenino , Ontología de Genes , Humanos , Hidrólisis , Metaloproteinasa 10 de la Matriz/metabolismo , Neoplasias Ováricas/patología , Péptidos/química , Péptidos/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Trombospondina 1/química , Trombospondina 1/metabolismoRESUMEN
Ovarian cancer (OC) accounts for the most gynecological cancer-related deaths in developed countries. Unfortunately, the lack of both evident early symptoms and effective asymptomatic population screening results in late diagnosis and inevitably poor prognosis. Hence, it is urgent to identify novel molecular markers to support personalized prognosis. In the present study, we have analyzed the clinical significance of miR-203 in OC using two institutionally independent cohorts. miR-203 levels were quantified in a screening (n = 125) and a validation cohort (n = 100, OVCAD multicenter study). Survival analysis was performed using progression and death as clinical endpoint events. Internal validation was conducted by bootstrap analysis, and decision curve analysis was used to evaluate the clinical benefit. Increased miR-203 levels in OC patients were correlated with unfavorable prognosis and higher risk for disease progression, independently of FIGO stage, tumor grade, residual tumor after surgery, chemotherapy response and age. The analysis of the institutionally independent validation cohort (OVCAD study) clearly confirmed the shorter survival outcome of the patients overexpressing miR-203. Additionally, integration of miR-203 levels with the established disease prognostic markers led to a superior stratification of OC patients that can ameliorate prognosis and benefit patient clinical management. In this regard, miR-203 expression constitutes a novel independent molecular marker to improve patients' prognosis in OC.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Neoplasias Ováricas/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Pronóstico , Tasa de SupervivenciaRESUMEN
Ovarian cancer (OC) remains a leading cause of gynecological cancer-related death worldwide, characterized by poor 5-year survival. Molecular markers could serve as crucial tools of personalized prognosis and therapy. Herein, we present miR-181a as novel predictor of OC prognosis, using five independent OC cohorts. In particular, a screening (n = 81) and an institutionally independent validation (n = 100, OVCAD multicenter study) serous OC (SOC) cohorts were analyzed. Bagnoli et al (2016) OC179 (n = 124) to OC133 (n = 100) and TCGA (n = 489) served as external validation cohorts. Patients' survival and disease progression were assessed as clinical endpoint events. Bootstrap analysis was performed for internal validation and decision curve analysis was utilized to evaluate clinical benefit. miR-181a overexpression was unveiled as powerful and independent molecular predictor of patients' poor survival and higher risk for disease progression after debulking surgery and platinum-based chemotherapy. Analysis of the OVCAD institutionally independent cohort, as well as of Bagnoli et al. and TCGA external cohorts further confirmed the unfavorable prognostic nature of miR-181a overexpression in SOC. Strikingly, multivariate prognostic models incorporating miR-181a with established disease markers clearly improved patients' risk-stratification and offered superior clinical benefit in OC prognostication. Conclusively, miR-181a evaluation could augment prognostic accuracy and support precision medicine decisions in OC.
Asunto(s)
Biomarcadores de Tumor/genética , Cistadenocarcinoma Seroso/terapia , MicroARNs/genética , Neoplasias Ováricas/terapia , Platino (Metal)/uso terapéutico , Regulación hacia Arriba , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Cistadenocarcinoma Seroso/genética , Procedimientos Quirúrgicos de Citorreducción , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/genética , Pronóstico , Análisis de Supervivencia , Resultado del TratamientoRESUMEN
In the past decade, immune-based therapies such as monoclonal antibodies against tumor epitopes or immune checkpoint inhibitors have become an integral part of contemporary cancer treatment in many entities. However, a fundamental prerequisite for the success of such therapies is a sufficient trafficking of tumor-infiltrating lymphocytes into the tumor microenvironment. This infiltration is facilitated by chemokines, a group of about 50 small proteins capable of chemotactically guiding leukocytes. Proteolytic inactivation of chemokines leading to an impaired infiltration of immune effector cells appears to be an efficient immune escape mechanism of solid cancers.The CXCR3 and CX3CR1 chemokine receptor ligands CXCL9-11 and CX3CL1, respectively, are mainly responsible for the tumor-suppressive lymphocytic infiltration into the tumor micromilieu. Their structure explains the biochemical basis of their proteolytic cleavage, while in vivo data from mouse models and patient samples shed light on the corresponding processes in cancer. The emerging roles of proteases, e.g., matrix metalloproteinases, cathepsins, and dipeptidyl peptidase 4, in chemokine inactivation define new resistance mechanisms against immunotherapies and identify attractive new targets to enhance immune intervention in cancer.
Asunto(s)
Quimiocinas/inmunología , Quimiocinas/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Secuencia de Aminoácidos , Animales , Receptor 1 de Quimiocinas CX3C/inmunología , Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CXCL10/química , Quimiocina CXCL10/inmunología , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/química , Quimiocina CXCL11/inmunología , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/química , Quimiocina CXCL9/inmunología , Quimiocina CXCL9/metabolismo , Quimiocinas/química , Humanos , Linfocitos Infiltrantes de Tumor/enzimología , Linfocitos Infiltrantes de Tumor/patología , Modelos Moleculares , Neoplasias/enzimología , Neoplasias/patología , Péptido Hidrolasas/metabolismo , Proteolisis , Receptores CXCR3/inmunología , Receptores CXCR3/metabolismoRESUMEN
BACKGROUND: The serine protease KLK12 belongs to the human fifteen-member family of kallikrein-related peptidases. Differential expression accompanied by either increased or decreased enzymatic activity has been linked to several diseases including cancer. Triple-negative breast cancer (TNBC) represents a very aggressive subgroup of breast cancer with high tumor recurrence rates and poor patient prognosis. Here, we quantified the KLK12 mRNA expression levels in tumor tissue of TNBC patients and analyzed their prognostic value. METHODS: In the present study, KLK12 mRNA expression in tumor tissue of TNBC patients (n = 116) was determined by quantitative real-time PCR assay. The association of KLK12 mRNA levels with clinical parameters, and patients' outcome was analyzed using Chi-square tests, Cox regression models and Kaplan-Meier survival analysis. RESULTS: Positive, but low KLK12 mRNA levels were detected in about half of the cases (54 out of 116; 47%), the other samples were negative for KLK12 mRNA expression. No significant association was observed between KLK12 mRNA levels and clinicopathological variables (age, lymph node status, tumor size, and histological grade). In univariate Cox analyses, positive KLK12 mRNA expression was significantly associated with shortened disease-free survival (DFS; hazard ratio [HR] = 2.12, 95% CI = 1.19-3.78, p = 0.010) as well as overall survival (OS; HR = 1.91, 95% CI = 1.04-3.50, p = 0.037). In multivariable Cox analysis, including all clinical parameters plus KLK12 mRNA, the latter - together with age - remained an independent unfavorable predictive marker for DFS (HR = 2.33, 95% CI = 1.28-4.24, p = 0.006) and showed a trend towards significance in case of OS (HR = 1.80, 95% CI = 0.96-3.38, p = 0.066). CONCLUSIONS: Positive KLK12 expression is remarkably associated with shortened DFS and OS, suggesting that KLK12 plays a tumor-supporting role in TNBC.
Asunto(s)
Regulación hacia Abajo , Perfilación de la Expresión Génica/métodos , Calicreínas/genética , Neoplasias de la Mama Triple Negativas/patología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Persona de Mediana Edad , Clasificación del Tumor , Pronóstico , Análisis de Regresión , Análisis de Supervivencia , Neoplasias de la Mama Triple Negativas/genéticaRESUMEN
Chemokine CCL14 is inactive in its proform. Here, we show that inflammation- and cancer-associated kallikrein-related peptidases KLK5 and KLK8 remove the N-terminal eight amino acids from the proform thereby converting CCL14 to its active state. Activity of the chemokine is demonstrated by migration of myeloid cells expressing relevant receptors.
Asunto(s)
Quimiocinas CC/metabolismo , Quimiocinas/metabolismo , Calicreínas/metabolismo , Asma/patología , Aterosclerosis/patología , Línea Celular Tumoral , Quimiocina CX3CL1/metabolismo , Quimiocina CXCL12/metabolismo , Enfermedad de Crohn/patología , Activación Enzimática , Humanos , Interleucina-8/metabolismo , Leucemia/patología , Proteínas Inflamatorias de Macrófagos/metabolismo , Pancreatitis/patología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
BACKGROUND: In ovarian cancer, dysregulation of mRNA expression of several components of the family of the kallikrein-related peptidases (KLKs) is observed. In this study, we have analyzed the KLK5 mRNA expression pattern in tumor tissue of patients suffering from high-grade serous ovarian cancer stage FIGO III/IV. Moreover, we have correlated the KLK5 mRNA levels with clinical outcome. METHODS: We assessed the mRNA expression levels of KLK5 in tumor tissue of 138 patients using quantitative PCR (qPCR). The mRNA levels were correlated with KLK5 antigen tumor tissue levels measured by ELISA (available for 41 of the 138 patients), established clinical features as well as patients' outcome, using Chi-square-tests, Mann-Whitney U-tests and Spearman rank calculations as well as Cox regression models, Kaplan-Meier survival analysis and the log-rank test. RESULTS: A highly significant correlation between the mRNA expression levels and protein levels of KLK5 in tumor tissues was observed (rs = 0.683, p < 0.001). In univariate Cox regression analysis, elevated KLK5 mRNA expression was remarkably associated with reduced progression-free survival (PFS; p = 0.047), but not with overall survival (OS). Association of KLK5 mRNA expression with PFS was validated in silico using The Cancer Genome Atlas. For this, Affymetrix-based mRNA data (n = 377) were analyzed applying the Kaplan-Meier Plotter tool (p = 0.027). In multivariable Cox analysis, KLK5 mRNA values revealed a trend towards statistical significance for PFS (p = 0.095), whereas residual tumor mass (0 mm vs. > 0 mm), but not ascites fluid volume (≤500 ml vs. > 500 ml), remained an independent indicator for both OS and PFS (p < 0.001, p = 0.005, respectively). CONCLUSIONS: These results obtained with a homogenous patient group with all patients suffering from advanced high-grade serous ovarian cancer support previous results suggesting elevated KLK5 mRNA levels as an unfavorable marker in ovarian cancer.
Asunto(s)
Carcinoma Epitelial de Ovario/patología , Calicreínas/metabolismo , Neoplasias Ováricas/patología , ARN Mensajero/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Distribución de Chi-Cuadrado , Femenino , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Estadificación de Neoplasias , Supervivencia sin Progresión , Modelos de Riesgos Proporcionales , Reacción en Cadena en Tiempo Real de la Polimerasa , Estadísticas no ParamétricasRESUMEN
BACKGROUND: Tissue kallikrein-related peptidases 4, 5, 6 and 7 (KLK4-7) strongly increase the malignancy of ovarian cancer cells. Deciphering their downstream effectors, we aimed at finding new potential prognostic biomarkers and treatment targets for ovarian cancer patients. KLK4-7-transfected (OV-KLK4-7) and vector-control OV-MZ-6 (OV-VC) ovarian cancer cells were established to select differentially regulated factors. METHODS: With three independent approaches, PCR arrays, genome-wide microarray and proteome analyses, we identified 10 candidates (MSN, KRT19, COL5A2, COL1A2, BMP5, F10, KRT7, JUNB, BMP4, MMP1). To determine differential protein expression, we performed western blot analyses, immunofluorescence and immunohistochemistry for four candidates (MSN, KRT19, KRT7, JUNB) in cells, tumour xenograft and patient-derived tissues. RESULTS: We demonstrated that KLK4-7 clearly regulates expression of MSN, KRT19, KRT7 and JUNB at the mRNA and protein levels in ovarian cancer cells and tissues. Protein expression of the top-upregulated effectors, MSN and KRT19, was investigated by immunohistochemistry in patients afflicted with serous ovarian cancer and related to KLK4-7 immunoexpression. Significant positive associations were found for KRT19/KLK4, KRT19/KLK5 and MSN/KLK7. CONCLUSION: These findings imply that KLK4-7 exert key modulatory effects on other cancer-related genes and proteins in ovarian cancer. These downstream effectors of KLK4-7, MSN and KRT19 may represent important therapeutic targets in serous ovarian cancer.
Asunto(s)
Cistadenocarcinoma Seroso/metabolismo , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Calicreínas/genética , Neoplasias Ováricas/metabolismo , Proteómica/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Cistadenocarcinoma Seroso/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Ováricas/genética , PronósticoRESUMEN
Human kallikrein-related peptidases 3, 4, 11, and KLK2, the activator of KLK3/PSA, belong to the prostatic group of the KLKs, whose major physiological function is semen liquefaction during the fertilization process. Notably, these KLKs are upregulated in prostate cancer and are used as clinical biomarkers or have been proposed as therapeutic targets. However, this potential awaits a detailed characterization of these proteases. In order to study glycosylated prostatic KLKs resembling the natural proteases, we used Leishmania (LEXSY) and HEK293 cells for secretory expression. Both systems allowed the subsequent purification of soluble pro-KLK zymogens with correct propeptides and of the mature forms. Periodic acid-Schiff reaction, enzymatic deglycosylation assays, and mass spectrometry confirmed the glycosylation of these KLKs. Activation of glycosylated pro-KLKs 4 and 11 turned out to be most efficient by glycosylated KLK2 and KLK4, respectively. By comparing the glycosylated prostatic KLKs with their non-glycosylated counterparts from Escherichia coli, it was observed that the N-glycans stabilize the KLK proteases and change their activation profiles and their enzymatic activity to some extent. The functional role of glycosylation in prostate-specific KLKs could pave the way to a deeper understanding of their biology and to medical applications.
Asunto(s)
Calicreínas/metabolismo , Antígeno Prostático Específico/metabolismo , Serina Endopeptidasas/metabolismo , Clonación Molecular , Glicosilación , Células HEK293 , Humanos , Calicreínas/genética , Antígeno Prostático Específico/genética , Serina Endopeptidasas/genéticaRESUMEN
The activity of kallikrein-related peptidase 6 (KLK6) is deregulated in various diseases such as cancer and neurodegenerative diseases. KLK6 is thus considered as an attractive therapeutical target. In this short report, we depict some novel findings on the regulation of the KLK6 activity. Namely, we identified mechanism-based inhibitors (suicide substrates) from an in-house library of 6-substituted coumarin-3-carboxylate derivatives. In addition, a molecular dynamics study evidenced the allosteric behavior of KLK6 similar to that previously observed for some trypsin-like serine proteases. This allosteric behavior together with the coumarinic scaffold bring new opportunities for the design of KLK6 potent activity modulators, useful as therapeutics or activity-based probes.
Asunto(s)
Cumarinas/farmacología , Calicreínas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Regulación Alostérica/efectos de los fármacos , Cumarinas/química , Humanos , Calicreínas/metabolismo , Simulación de Dinámica Molecular , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/químicaRESUMEN
We recently reported that human melanoma cells, but not benign melanocytes, aberrantly express kallikrein-related peptidase 7 (KLK7). Here, we show a KLK7 overexpression-mediated decrease of cell adhesion to extracellular matrix binding proteins, associated with downregulation of α5/ß1/αv/ß3 integrin expression. We also report an up-regulation of MCAM/CD146 and an increase in spheroid formation of these cells. Our results demonstrate that aberrant KLK7 expression leads to a switch to a more malignant phenotype suggesting a potential role of KLK7 in melanoma invasion. Thus, KLK7 may represent a biomarker for melanoma progression and may be a potential therapeutic target for melanoma.
Asunto(s)
Calicreínas/genética , Calicreínas/metabolismo , Melanoma/genética , Melanoma/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Adhesión Celular/genética , Regulación hacia Abajo , Humanos , Integrinas/biosíntesis , Melanoma/metabolismo , FenotipoRESUMEN
Human kallikrein-related peptidase 2 (KLK2) is a key serine protease in semen liquefaction and prostate cancer together with KLK3/prostate-specific antigen. In order to decipher the function of its potential N-glycosylation site, we produced pro-KLK2 in Leishmania tarentolae cells and compared it with its non-glycosylated counterpart from Escherichia coli expression. Mass spectrometry revealed that Asn-95 carries a core glycan, consisting of two GlcNAc and three hexoses. Autocatalytic activation was retarded in glyco-pro-KLK2, whereas the activated glyco-form exhibited an increased proteolytic resistance. The specificity patterns obtained by the PICS (proteomic identification of protease cleavage sites) method are similar for both KLK2 variants, with a major preference for P1-Arg. However, glycosylation changes the enzymatic activity of KLK2 in a drastically substrate-dependent manner. Although glyco-KLK2 has a considerably lower catalytic efficiency than glycan-free KLK2 toward peptidic substrates with P2-Phe, the situation was reverted toward protein substrates, such as glyco-pro-KLK2 itself. These findings can be rationalized by the glycan-carrying 99-loop that prefers to cover the active site like a lid. By contrast, the non-glycosylated 99-loop seems to favor a wide open conformation, which mostly increases the apparent affinity for the substrates (i.e. by a reduction of Km). Also, the cleavage pattern and kinetics in autolytic inactivation of both KLK2 variants can be explained by a shift of the target sites due to the presence of the glycan. These striking effects of glycosylation pave the way to a deeper understanding of kallikrein-related peptidase biology and pathology.
Asunto(s)
Polisacáridos/metabolismo , Calicreínas de Tejido/química , Calicreínas de Tejido/metabolismo , Secuencia de Aminoácidos , Autólisis , Activación Enzimática , Fibronectinas/metabolismo , Glicosilación , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Proteolisis , Proteínas Recombinantes/aislamiento & purificación , Relación Estructura-Actividad , Especificidad por Sustrato , Factores de TiempoRESUMEN
Triple-negative breast cancer (TNBC), lacking the steroid hormone receptors ER and PR and the oncoprotein HER2, is characterized by its aggressive pattern and insensitivity to endocrine and HER2-directed therapy. Human kallikrein-related peptidases KLK1-15 provide a rich source of serine protease-type biomarkers associated with tumor growth and cancer progression for a variety of malignant diseases. In this study, recombinant KLK4 protein was generated and affinity-purified KLK4-directed polyclonal antibody pAb587 established to allow localization of KLK4 protein expression in tumor cell lines and archived formalin-fixed, paraffin-embedded TNBC tumor tissue specimens. For this, KLK4 protein expression was assessed by immunohistochemistry in primary tumor tissue sections (tissue microarrays) of 188 TNBC patients, mainly treated with anthracycline- or CMF-based polychemotherapy. KLK4 protein is localized in the cytoplasm of tumor and stroma cells. In this patient cohort, elevated stroma cell KLK4 expression, but not tumor cell KLK4 expression, is predictive for poor disease-free survival by univariate analysis (hazard ratio: 2.26, p=0.001) and multivariable analysis (hazard ratio: 2.12, p<0.01). Likewise, univariate analysis revealed a trend for statistical significance of elevated KLK4 stroma cell expression for overall survival of TNBC patients as well.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Calicreínas/metabolismo , Neoplasias de la Mama Triple Negativas/enzimología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/biosíntesis , Humanos , Calicreínas/biosíntesis , Análisis Multivariante , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales CultivadasRESUMEN
In serous ovarian cancer, the clinical relevance of tumor cell-expressed plasmin(ogen) (PLG) has not yet been evaluated. Due to its proteolytic activity, plasmin supports tumorigenesis, however, angiostatin(-like) fragments, derived from PLG, can also function as potent anti-tumorigenic factors. In the present study, we assessed PLG protein expression in 103 cases of advanced high-grade serous ovarian cancer (FIGO III/IV) by immunohistochemistry (IHC). In 70/103 cases, positive staining of tumor cells was observed. In univariate Cox regression analysis, PLG staining was positively associated with prolonged overall survival (OS) [hazard ratio (HR)=0.59, p=0.026] of the patients. In multivariable analysis, PLG, together with residual tumor mass, remained a statistically significant independent prognostic marker (HR=0.49, p=0.009). In another small patient cohort (n=29), we assessed mRNA expression levels of PLG by quantitative PCR. Here, elevated PLG mRNA levels were also significantly associated with prolonged OS of patients (Kaplan-Meier analysis; p=0.001). This finding was validated by in silico analysis of a microarray data set (n=398) from The Cancer Genome Atlas (Kaplan-Meier analysis; p=0.031). In summary, these data indicate that elevated PLG expression represents a favorable prognostic biomarker in advanced (FIGO III/IV) high-grade serous ovarian cancer.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Plasminógeno/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Estudios de Cohortes , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Plasminógeno/genética , Inhibidor 1 de Activador Plasminogénico/genética , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estudios Retrospectivos , Análisis de Supervivencia , Activador de Plasminógeno de Tipo Uroquinasa/genética , Adulto JovenRESUMEN
Tumor cells use broad spectrum proteolytic activity of plasmin to invade tissue and form metastatic foci. Cell surface-associated enolase-1 (ENO-1) enhances plasmin formation and thus participates in the regulation of pericellular proteolysis. Although increased levels of cell surface bound ENO-1 have been described in different types of cancer, the molecular mechanism responsible for ENO-1 exteriorization remains elusive. In the present study, increased ENO-1 protein levels were found in ductal breast carcinoma and on the cell surface of highly metastatic breast cancer cell line MDA-MB-231. Elevated cell surface-associated ENO-1 expression correlated with augmented MDA-MB-231 cell migratory and invasive properties. Exposure of MDA-MB-231 cells to LPS potentiated translocation of ENO-1 to the cell surface and its release into the extracellular space in the form of exosomes. These effects were independent of de novo protein synthesis and did not require the classical endoplasmic reticulum/Golgi pathway. LPS-triggered ENO-1 exteriorization was suppressed by pretreatment of MDA-MB-231 cells with the Ca(2+) chelator BAPTA or an inhibitor of endoplasmic reticulum Ca(2+)-ATPase pump, cyclopiazonic acid. In line with these observations, the stromal interaction molecule (STIM) 1 and the calcium release-activated calcium modulator (ORAI) 1-mediated store-operated Ca(2+) entry were found to regulate LPS-induced ENO-1 exteriorization. Pharmacological blockage or knockdown of STIM1 or ORAI1 reduced ENO-1-dependent migration of MDA-MB-231 cells. Collectively, our results demonstrate the pivotal role of store-operated Ca(2+) channel-mediated Ca(2+) influx in the regulation of ENO-1 exteriorization and thus in the modulation of cancer cell migratory and invasive properties.