Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(5): 1084-1097.e21, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730851

RESUMEN

The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservation. VIDEO ABSTRACT.


Asunto(s)
Biodiversidad , Plancton/fisiología , Agua de Mar/microbiología , Geografía , Modelos Teóricos , Océanos y Mares , Filogenia
2.
J Eukaryot Microbiol ; 70(5): e12990, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448139

RESUMEN

Taxonomic assignment of operational taxonomic units (OTUs) is an important bioinformatics step in analyzing environmental sequencing data. Pairwise alignment and phylogenetic-placement methods represent two alternative approaches to taxonomic assignments, but their results can differ. Here we used available colpodean ciliate OTUs from forest soils to compare the taxonomic assignments of VSEARCH (which performs pairwise alignments) and EPA-ng (which performs phylogenetic placements). We showed that when there are differences in taxonomic assignments between pairwise alignments and phylogenetic placements at the subtaxon level, there is a low pairwise similarity of the OTUs to the reference database. We then showcase how the output of EPA-ng can be further evaluated using GAPPA to assess the taxonomic assignments when there exist multiple equally likely placements of an OTU, by taking into account the sum over the likelihood weights of the OTU placements within a subtaxon, and the branch distances between equally likely placement locations. We also inferred the evolutionary and ecological characteristics of the colpodean OTUs using their placements within subtaxa. This study demonstrates how to fully analyze the output of EPA-ng, by using GAPPA in conjunction with knowledge of the taxonomic diversity of the clade of interest.


Asunto(s)
ADN Ambiental , Filogenia
3.
Bioinformatics ; 38(1): 267-269, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34244702

RESUMEN

MOTIVATION: Previously we presented swarm, an open-source amplicon clustering programme that produces fine-scale molecular operational taxonomic units (OTUs) that are free of arbitrary global clustering thresholds. Here, we present swarm v3 to address issues of contemporary datasets that are growing towards tera-byte sizes. RESULTS: When compared with previous swarm versions, swarm v3 has modernized C++ source code, reduced memory footprint by up to 50%, optimized CPU-usage and multithreading (more than 7 times faster with default parameters), and it has been extensively tested for its robustness and logic. AVAILABILITY AND IMPLEMENTATION: Source code and binaries are available at https://github.com/torognes/swarm. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Análisis por Conglomerados
4.
Mol Ecol ; 31(14): 3761-3783, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35593305

RESUMEN

Major seasonal community reorganizations and associated biomass variations are landmarks of plankton ecology. However, the processes of plankton community turnover rates have not been fully elucidated so far. Here, we analyse patterns of planktonic protist community succession in temperate latitudes, based on quantitative taxonomic data from both microscopy counts (cells >10 µm) and ribosomal DNA metabarcoding (size fraction >3 µm, 18S rRNA gene) from plankton samples collected bimonthly over 8 years (2009-2016) at the SOMLIT-Astan station (Roscoff, Western English Channel). Based on morphology, diatoms were clearly the dominating group all year round and over the study period. Metabarcoding uncovered a wider diversity spectrum and revealed the prevalence of Dinophyceae and diatoms but also of Cryptophyta, Chlorophyta, Cercozoa, Syndiniales and Ciliophora in terms of read counts and or richness. The use of morphological and molecular analyses in combination allowed improving the taxonomic resolution and to identify the sequence of the dominant species and OTUs (18S V4 rDNA-derived taxa) that drive annual plankton successions. We detected that some of these dominant OTUs were benthic as a result of the intense tidal mixing typical of the French coasts in the English Channel. Our analysis of the temporal structure of community changes point to a strong seasonality and resilience. The temporal structure of environmental variables (especially Photosynthetic Active Radiation, temperature and macronutrients) and temporal structures generated by species life cycles and or species interactions, are key drivers of the observed cyclic annual plankton turnover.


Asunto(s)
Biodiversidad , Diatomeas , Diatomeas/genética , Eucariontes/genética , Filogenia , Plancton/genética , ARN Ribosómico 18S/genética , Estaciones del Año
5.
J Eukaryot Microbiol ; 68(1): e12833, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33155377

RESUMEN

Dinophytes are widely distributed in marine- and fresh-waters, but have yet to be conclusively documented in terrestrial environments. Here, we evaluated the presence of these protists from an environmental DNA metabarcoding dataset of Neotropical rainforest soils. Using a phylogenetic placement approach with a reference alignment and tree, we showed that the numerous sequencing reads that were phylogenetically placed as dinophytes did not correlate with taxonomic assignment, environmental preference, nutritional mode, or dormancy. All the dinophytes in the soils are rather windblown dispersal units of aquatic species and are not biologically active residents of terrestrial environments.


Asunto(s)
Biodiversidad , Dinoflagelados/fisiología , Suelo/parasitología , Costa Rica , Ecuador , Panamá , Bosque Lluvioso , Viento
6.
Microb Ecol ; 82(2): 549-553, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33420911

RESUMEN

Microsporidia are obligate parasites that are closely related to Fungi. While the widely known "long-branch" Microsporidia infect mostly metazoans, the hosts of "short-branch" Microsporidia are only partially characterized or not known at all. Here, we used network analyses from Neotropical rainforest soil metabarcoding data, to infer co-occurrences between environmental lineages of short-branch microsporidians and their potential hosts. We found significant co-occurrences with several taxa, especially with Apicomplexa, Cercozoa, and Fungi, as well as some Metazoa. Our results are the first step to identify potential hosts of the environmental lineages of short-branch microsporidians, which can be targeted in future molecular and microscopic studies.


Asunto(s)
Cercozoos , Microsporidios , Microsporidios/genética , Filogenia , Bosque Lluvioso , Suelo
7.
Environ Microbiol ; 22(8): 3429-3445, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32510843

RESUMEN

The Honghe Hani rice terraces system (HHRTS) is a traditional rice cultivation system where Hani people cultivate remarkably diverse rice varieties. Recent introductions of modern rice varieties to the HHRTS have significantly increased the severity of rice diseases within the terraces. Here, we determine the impacts of these recent introductions on the composition of the rice-associated microbial communities. We confirm that the HHRTS contains a range of both traditional HHRTS landraces and introduced modern rice varieties and find differences between the microbial communities of these two groups. However, this introduction of modern rice varieties has not strongly impacted the overall diversity of the HHRTS rice microbial community. Furthermore, we find that the rice varieties (i.e. groups of closely related genotypes) have significantly structured the rice microbial community composition (accounting for 15%-22% of the variance) and that the core microbial community of HHRTS rice plants represents less than 3.3% of all the microbial taxa identified. Collectively, our study suggests a highly diverse HHRTS rice holobiont (host with its associated microbes) where the diversity of rice hosts mirrors the diversity of their microbial communities. Further studies will be needed to better determine how such changes might impact the sustainability of the HHRTS.


Asunto(s)
Biodiversidad , Microbiota/genética , Oryza/microbiología , Agricultura/métodos , China , Humanos , Enfermedades de las Plantas/microbiología
8.
Mycorrhiza ; 29(6): 637-648, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31732817

RESUMEN

Despite the strong ecological importance of ectomycorrhizal (ECM) fungi, their vertical distribution remains poorly understood. To our knowledge, ECM structures associated with trees have never been reported in depths below 2 meters. In this study, fine roots and ECM root tips were sampled down to 4-m depth during the digging of two independent pits differing by their water availability. A meta-barcoding approach based on Illumina sequencing of internal transcribed spacers (ITS1 and ITS2) was carried out on DNA extracted from root samples (fine roots and ECM root tips separately). ECM fungi dominated the root-associated fungal community, with more than 90% of sequences assigned to the genus Pisolithus. The morphological and barcoding results demonstrated, for the first time, the presence of ECM symbiosis down to 4-m. The molecular diversity of Pisolithus spp. was strongly dependent on depth, with soil pH and soil water content as primary drivers of the Pisolithus spp. structure. Altogether, our results highlight the importance to consider the ECM symbiosis in deep soil layers to improve our understanding of fine roots functioning in tropical soils.


Asunto(s)
Basidiomycota , Micorrizas , Brasil , Raíces de Plantas , Árboles
9.
Mol Ecol ; 27(13): 2846-2857, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29851187

RESUMEN

Tropical animals and plants are known to have high alpha diversity within forests, but low beta diversity between forests. By contrast, it is unknown whether microbes inhabiting the same ecosystems exhibit similar biogeographic patterns. To evaluate the biogeographies of tropical protists, we used metabarcoding data of species sampled in the soils of three lowland Neotropical rainforests. Taxa-area and distance-decay relationships for three of the dominant protist taxa and their subtaxa were estimated at both the OTU and phylogenetic levels, with presence-absence and abundance-based measures. These estimates were compared to null models. High local alpha and low regional beta diversity patterns were consistently found for both the parasitic Apicomplexa and the largely free-living Cercozoa and Ciliophora. Similar to animals and plants, the protists showed spatial structures between forests at the OTU and phylogenetic levels, and only at the phylogenetic level within forests. These results suggest that the biogeographies of macro- and micro-organismal eukaryotes in lowland Neotropical rainforests are partially structured by the same general processes. However, and unlike the animals and plants, the protist OTUs did not exhibit spatial structures within forests, which hinders our ability to estimate the local and regional diversity of protists in tropical forests.


Asunto(s)
Biodiversidad , Cercozoos/genética , Cilióforos/genética , Filogeografía , Animales , Código de Barras del ADN Taxonómico , Ecosistema , Plantas/genética , Bosque Lluvioso , Microbiología del Suelo
10.
J Eukaryot Microbiol ; 65(6): 773-782, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29603494

RESUMEN

Some protists with microsporidian-like cell biological characters, including Mitosporidium, Paramicrosporidium, and Nucleophaga, have SSU rRNA gene sequences that are much less divergent than canonical Microsporidia. We analysed the phylogenetic placement and environmental diversity of microsporidian-like lineages that group near the base of the fungal radiation and show that they group in a clade with metchnikovellids and canonical microsporidians, to the exclusion of the clade including Rozella, in line with what is currently known of their morphology and cell biology. These results show that the phylogenetic scope of Microsporidia has been greatly underestimated. We propose that much of the lineage diversity previously thought to be cryptomycotan/rozellid is actually microsporidian, offering new insights into the evolution of the highly specialized parasitism of canonical Microsporidia. This insight has important implications for our understanding of opisthokont evolution and ecology, and is important for accurate interpretation of environmental diversity. Our analyses also demonstrate that many opisthosporidian (aphelid+rozellid+microsporidian) SSU V4 OTUs from Neotropical forest soils group with the short-branching Microsporidia, consistent with the abundance of their protist and arthropod hosts in soils. This novel diversity of Microsporidia provides a unique opportunity to investigate the evolutionary origins of a highly specialized clade of major animal parasites.


Asunto(s)
Líquenes/clasificación , Líquenes/genética , Microsporidios/clasificación , Microsporidios/genética , Filogenia , Animales , Artrópodos/microbiología , Biodiversidad , Quitridiomicetos/genética , ADN de Hongos/genética , Ecología , Eucariontes , Evolución Molecular , Flagelos , Genoma Fúngico , Líquenes/citología , Microsporidios/citología , Microbiología del Suelo
11.
J Eukaryot Microbiol ; 64(3): 407-411, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28337822

RESUMEN

Universal taxonomic frameworks have been critical tools to structure the fields of botany, zoology, mycology, and bacteriology as well as their large research communities. Animals, plants, and fungi have relatively solid, stable morpho-taxonomies built over the last three centuries, while bacteria have been classified for the last three decades under a coherent molecular taxonomic framework. By contrast, no such common language exists for microbial eukaryotes, even though environmental '-omics' surveys suggest that protists make up most of the organismal and genetic complexity of our planet's ecosystems! With the current deluge of eukaryotic meta-omics data, we urgently need to build up a universal eukaryotic taxonomy bridging the protist -omics age to the fragile, centuries-old body of classical knowledge that has effectively linked protist taxa to morphological, physiological, and ecological information. UniEuk is an open, inclusive, community-based and expert-driven international initiative to build a flexible, adaptive universal taxonomic framework for eukaryotes. It unites three complementary modules, EukRef, EukBank, and EukMap, which use phylogenetic markers, environmental metabarcoding surveys, and expert knowledge to inform the taxonomic framework. The UniEuk taxonomy is directly implemented in the European Nucleotide Archive at EMBL-EBI, ensuring its broad use and long-term preservation as a reference taxonomy for eukaryotes.


Asunto(s)
Clasificación , Eucariontes/clasificación , Animales , Bacterias/clasificación , Biodiversidad , Bases de Datos de Ácidos Nucleicos , Ecosistema , Ambiente , Eucariontes/citología , Eucariontes/genética , Eucariontes/fisiología , Células Eucariotas , Hongos/clasificación , Filogenia
12.
Environ Microbiol ; 18(2): 609-26, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26337598

RESUMEN

Dinoflagellates (Alveolata) are one of the ecologically most important groups of modern phytoplankton. Their biological complexity makes assessment of their global diversity and community structure difficult. We used massive V9 18S rDNA sequencing from 106 size-fractionated plankton communities collected across the world's surface oceans during the Tara Oceans expedition (2009-2012) to assess patterns of pelagic dinoflagellate diversity and community structuring over global taxonomic and ecological scales. Our data and analyses suggest that dinoflagellate diversity has been largely underestimated, representing overall ∼ 1/2 of protistan rDNA metabarcode richness assigned at ≥ 90% to a reference sequence in the world's surface oceans. Dinoflagellate metabarcode diversity and abundance display regular patterns across the global scale, with different order-level taxonomic compositions across organismal size fractions. While the pico to nano-planktonic communities are composed of an extreme diversity of metabarcodes assigned to Gymnodiniales or are simply undetermined, most micro-dinoflagellate metabarcodes relate to the well-referenced Gonyaulacales and Peridiniales orders, and a lower abundance and diversity of essentially symbiotic Peridiniales is unveiled in the meso-plankton. Our analyses could help future development of biogeochemical models of pelagic systems integrating the separation of dinoflagellates into functional groups according to plankton size classes.


Asunto(s)
Código de Barras del ADN Taxonómico , Dinoflagelados/clasificación , Dinoflagelados/genética , Fitoplancton/clasificación , Fitoplancton/genética , ARN Ribosómico 18S/genética , Secuencia de Bases , Biodiversidad , ADN Ribosómico/genética , Ecología , Océanos y Mares
13.
Mol Biol Evol ; 31(3): 660-72, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24336924

RESUMEN

To establish which meiosis genes are present in ciliates, and to look for clues as to which recombination pathways may be treaded by them, four genomes were inventoried for 11 meiosis-specific and 40 meiosis-related genes. We found that the set of meiosis genes shared by Tetrahymena thermophila, Paramecium tetraurelia, Ichthyophthirius multifiliis, and Oxytricha trifallax is consistent with the prevalence of a Mus81-dependent class II crossover pathway that is considered secondary in most model eukaryotes. There is little evidence for a canonical class I crossover pathway that requires the formation of a synaptonemal complex (SC). This gene inventory suggests that meiotic processes in ciliates largely depend on mitotic repair proteins for executing meiotic recombination. We propose that class I crossovers and SCs were reduced sometime during the evolution of ciliates. Consistent with this reduction, we provide microscopic evidence for the presence only of degenerate SCs in Stylonychia mytilus. In addition, lower nonsynonymous to synonymous mutation rates of some of the meiosis genes suggest that, in contrast to most other nuclear genes analyzed so far, meiosis genes in ciliates are largely evolving at a slower rate than those genes in fungi and animals.


Asunto(s)
Cilióforos/genética , Intercambio Genético , Genes Protozoarios/genética , Meiosis/genética , Complejo Sinaptonémico , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Cilióforos/ultraestructura , Funciones de Verosimilitud , Filogenia , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/ultraestructura
14.
Mol Biol Evol ; 31(4): 993-1009, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24473288

RESUMEN

Nucleotide positions in the hypervariable V4 and V9 regions of the small subunit (SSU)-rDNA locus are normally difficult to align and are usually removed before standard phylogenetic analyses. Yet, with next-generation sequencing data, amplicons of these regions are all that are available to answer ecological and evolutionary questions that rely on phylogenetic inferences. With ciliates, we asked how inclusion of the V4 or V9 regions, regardless of alignment quality, affects tree topologies using distinct phylogenetic methods (including PairDist that is introduced here). Results show that the best approach is to place V4 amplicons into an alignment of full-length Sanger SSU-rDNA sequences and to infer the phylogenetic tree with RAxML. A sliding window algorithm as implemented in RAxML shows, though, that not all nucleotide positions in the V4 region are better than V9 at inferring the ciliate tree. With this approach and an ancestral-state reconstruction, we use V4 amplicons from European nearshore sampling sites to infer that rather than being primarily terrestrial and freshwater, colpodean ciliates may have repeatedly transitioned from terrestrial/freshwater to marine environments.


Asunto(s)
Cilióforos/genética , Microbiología del Agua , Teorema de Bayes , ADN Espaciador Ribosómico/genética , Evolución Molecular , Agua Dulce/microbiología , Genes Protozoarios , Especiación Genética , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos , Filogenia , Subunidades Ribosómicas Pequeñas/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN
15.
Environ Microbiol ; 17(10): 4035-49, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26119494

RESUMEN

Although protists are critical components of marine ecosystems, they are still poorly characterized. Here we analysed the taxonomic diversity of planktonic and benthic protist communities collected in six distant European coastal sites. Environmental deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from three size fractions (pico-, nano- and micro/mesoplankton), as well as from dissolved DNA and surface sediments were used as templates for tag pyrosequencing of the V4 region of the 18S ribosomal DNA. Beta-diversity analyses split the protist community structure into three main clusters: picoplankton-nanoplankton-dissolved DNA, micro/mesoplankton and sediments. Within each cluster, protist communities from the same site and time clustered together, while communities from the same site but different seasons were unrelated. Both DNA and RNA-based surveys provided similar relative abundances for most class-level taxonomic groups. Yet, particular groups were overrepresented in one of the two templates, such as marine alveolates (MALV)-I and MALV-II that were much more abundant in DNA surveys. Overall, the groups displaying the highest relative contribution were Dinophyceae, Diatomea, Ciliophora and Acantharia. Also, well represented were Mamiellophyceae, Cryptomonadales, marine alveolates and marine stramenopiles in the picoplankton, and Monadofilosa and basal Fungi in sediments. Our extensive and systematic sequencing of geographically separated sites provides the most comprehensive molecular description of coastal marine protist diversity to date.


Asunto(s)
Alveolados/genética , Sedimentos Geológicos/microbiología , Plancton/clasificación , Plancton/genética , Agua de Mar/microbiología , Estramenopilos/genética , Secuencia de Bases , Biodiversidad , Ecosistema , Europa (Continente) , Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
16.
Proc Biol Sci ; 282(1819)2015 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-26582030

RESUMEN

Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal 'OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments.


Asunto(s)
Hongos/clasificación , Hongos/genética , Variación Genética , Sedimentos Geológicos/microbiología , Microbiota , Agua de Mar/microbiología , ADN de Hongos/genética , Europa (Continente) , Microscopía Fluorescente , Datos de Secuencia Molecular , Filogenia , ARN de Hongos/genética , Análisis de Secuencia de ADN
17.
Extremophiles ; 19(2): 283-95, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25472012

RESUMEN

We used high-throughput sequencing to unravel the genetic diversity of protistan (including fungal) plankton in hypersaline ponds of the Ria Formosa solar saltern works in Portugal. From three ponds of different salinity (4, 12 and 38 %), we obtained ca. 105,000 amplicons (V4 region of the SSU rDNA). The genetic diversity we found was higher than what has been described from solar saltern ponds thus far by microscopy or molecular studies. The obtained operational taxonomic units (OTUs) could be assigned to 14 high-rank taxonomic groups and blasted to 120 eukaryotic families. The novelty of this genetic diversity was extremely high, with 27 % of all OTUs having a sequence divergence of more than 10 % to deposited sequences of described taxa. The highest degree of novelty was found at intermediate salinity of 12 % within the ciliates, which traditionally are considered as the best known and described taxon group within the kingdom Protista. Further substantial novelty was detected within the stramenopiles and the chlorophytes. Analyses of community structures suggest a transition boundary for protistan plankton between 4 and 12 % salinity, suggesting different haloadaptation strategies in individual evolutionary lineages as a result of environmental filtering. Our study makes evident the gaps in our knowledge not only of protistan and fungal plankton diversity in hypersaline environments, but also in their ecology and their strategies to cope with these environmental conditions. It substantiates that specific future research needs to fill these gaps.


Asunto(s)
Biodiversidad , Plancton/genética , Tolerancia a la Sal , Alveolados/genética , Chlorophyta/genética , Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Plancton/clasificación , Portugal , Salinidad , Análisis de Secuencia de ADN
18.
J Eukaryot Microbiol ; 62(3): 338-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25312509

RESUMEN

High-throughput sequencing platforms are continuing to increase resulting read lengths, which is allowing for a deeper and more accurate depiction of environmental microbial diversity. With the nascent Reagent Kit v3, Illumina MiSeq now has the ability to sequence the eukaryotic hyper-variable V4 region of the SSU-rDNA locus with paired-end reads. Using DNA collected from soils with analyses of strictly- and nearly identical amplicons, here we ask how the new Illumina MiSeq data compares with what we can obtain with Roche/454 GS FLX with regard to quantity and quality, presence and absence, and abundance perspectives. We show that there is an easy qualitative transition from the Roche/454 to the Illumina MiSeq platforms. The ease of this transition is more nuanced quantitatively for low-abundant amplicons, although estimates of abundances are known to also vary within platforms.


Asunto(s)
Biota , Microbiología Ambiental , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Ribosómico 18S/genética
19.
Nucleic Acids Res ; 41(Database issue): D597-604, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23193267

RESUMEN

The interrogation of genetic markers in environmental meta-barcoding studies is currently seriously hindered by the lack of taxonomically curated reference data sets for the targeted genes. The Protist Ribosomal Reference database (PR(2), http://ssu-rrna.org/) provides a unique access to eukaryotic small sub-unit (SSU) ribosomal RNA and DNA sequences, with curated taxonomy. The database mainly consists of nuclear-encoded protistan sequences. However, metazoans, land plants, macrosporic fungi and eukaryotic organelles (mitochondrion, plastid and others) are also included because they are useful for the analysis of high-troughput sequencing data sets. Introns and putative chimeric sequences have been also carefully checked. Taxonomic assignation of sequences consists of eight unique taxonomic fields. In total, 136 866 sequences are nuclear encoded, 45 708 (36 501 mitochondrial and 9657 chloroplastic) are from organelles, the remaining being putative chimeric sequences. The website allows the users to download sequences from the entire and partial databases (including representative sequences after clustering at a given level of similarity). Different web tools also allow searches by sequence similarity. The presence of both rRNA and rDNA sequences, taking into account introns (crucial for eukaryotic sequences), a normalized eight terms ranked-taxonomy and updates of new GenBank releases were made possible by a long-term collaboration between experts in taxonomy and computer scientists.


Asunto(s)
ADN Ribosómico/química , Bases de Datos de Ácidos Nucleicos , Genes de ARNr , ARN Ribosómico/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Código de Barras del ADN Taxonómico , Eucariontes/clasificación , Eucariontes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Internet
20.
J Eukaryot Microbiol ; 61(4): 404-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24801645

RESUMEN

Here we provide a brief review of the rare biosphere from the perspective of ciliates and other microbial eukaryotes. We trace research on rarity from its lack of much in-depth focus in morphological and Sanger sequencing projects, to its central importance in analyses using high throughput sequencing strategies. The problem that the rare biosphere is potentially comprised of mostly errors is then discussed in the light of asking community-comparative, novel-diversity, and ecosystem-functioning questions.


Asunto(s)
Cilióforos/fisiología , Ecosistema , Biodiversidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA