Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38712046

RESUMEN

Interleukin 2 (IL-2) is the first identified cytokine and its interaction with receptors has been known to shape the immune responses in many lymphoid or non-lymphoid tissues for more than four decades. Active T cells are the primary cellular source for IL-2 production and epithelial cells have never been considered the major cellular source of IL-2 under physiological conditions. It is, however, tempting to speculate that epithelial cells could potentially express IL-2 that regulates the intricate interactions between epithelial cells and lymphocytes. Datamining our recently published single-cell RNAseq in the mouse mammary gland identified IL-2 expression in mammary epithelial cells, which is induced by prolactin via the STAT5 signaling pathway. Furthermore, epithelial IL-2 plays a crucial role in maintaining the physiological functions of natural killer (NK) cells within the mammary glands. IL-2 deletion in the mammary epithelial cells leads to a significant reduction in the number and function of NK cells, which in turn results in defective immunosurveillance, expansion of luminal epithelial cells, and tumor development. Interestingly, T cells in the mammary glands are not changed, indicating the specific regulation of NK cells by epithelial IL-2 production. In agreement, we also found that human epithelial cells express IL-2 and NK cells express the highest level of IL2RB among all the immune cells. Here, we provide the first evidence that epithelial cells produce IL-2, which is critical for maintaining the physiological functions of NK cells in immunosurveillance.

2.
J Exp Med ; 221(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38334978

RESUMEN

An effective cancer therapy requires killing cancer cells and targeting the tumor microenvironment (TME). Searching for molecules critical for multiple cell types in the TME, we identified NR4A1 as one such molecule that can maintain the immune suppressive TME. Here, we establish NR4A1 as a valid target for cancer immunotherapy and describe a first-of-its-kind proteolysis-targeting chimera (PROTAC, named NR-V04) against NR4A1. NR-V04 degrades NR4A1 within hours in vitro and exhibits long-lasting NR4A1 degradation in tumors with an excellent safety profile. NR-V04 inhibits and frequently eradicates established tumors. At the mechanistic level, NR-V04 induces the tumor-infiltrating (TI) B cells and effector memory CD8+ T (Tem) cells and reduces monocytic myeloid-derived suppressor cells (m-MDSC), all of which are known to be clinically relevant immune cell populations in human melanomas. Overall, NR-V04-mediated NR4A1 degradation holds promise for enhancing anticancer immune responses and offers a new avenue for treating various types of cancers such as melanoma.


Asunto(s)
Melanoma , Células Supresoras de Origen Mieloide , Humanos , Línea Celular Tumoral , Inmunoterapia , Melanoma/patología , Células Supresoras de Origen Mieloide/patología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Microambiente Tumoral , Quimera Dirigida a la Proteólisis
3.
Cancers (Basel) ; 14(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35805056

RESUMEN

Breast cancer stem cells (BCSCs) constitute a small population of cells within breast cancer and are characterized by their ability to self-renew, differentiate, and recapitulate the heterogeneity of the tumor. Clinically, BCSCs have been correlated with cancer progression, metastasis, relapse, and drug resistance. The tumorigenic roles of BCSCs have been extensively reviewed and will not be the major focus of the current review. Here, we aim to highlight how the crucial intrinsic signaling pathways regulate the fate of BCSCs, including the Wnt, Notch, Hedgehog, and NF-κB signaling pathways, as well as how different cell populations crosstalk with BCSCs within the TME, including adipocytes, endothelial cells, fibroblasts, and immune cells. Based on the molecular and cellular activities of BCSCs, we will also summarize the targeting strategies for BCSCs and related clinical trials. This review will highlight that BCSC development in breast cancer is impacted by both BCSC endogenous signaling and external factors in the TME, which provides an insight into how to establish a comprehensively therapeutic strategy to target BCSCs for breast cancer treatments.

4.
Cancers (Basel) ; 13(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34680266

RESUMEN

Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.

5.
Cancers (Basel) ; 14(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35008370

RESUMEN

The oncogenic role of estrogen receptor (ER) signaling in breast cancer has long been established. Interaction of estrogen with estrogen receptor (ER) in the nucleus activates genomic pathways of estrogen signaling. In contrast, estrogen interaction with the cell membrane-bound G-protein-coupled estrogen receptor (GPER) activates the rapid receptor-mediated signaling transduction cascades. Aberrant estrogen signaling enhances mammary epithelial cell proliferation, survival, and angiogenesis, hence is an important step towards breast cancer initiation and progression. Meanwhile, a growing number of studies also provide evidence for estrogen's pro- or anti-inflammatory roles. As other articles in this issue cover classic ER and GPER signaling mediated by estrogen, this review will discuss the crucial mechanisms by which estrogen signaling influences chronic inflammation and how that is involved in breast cancer. Xenoestrogens acquired from plant diet or exposure to industrial products constantly interact with and alter innate estrogen signaling at various levels. As such, they can modulate chronic inflammation and breast cancer development. Natural xenoestrogens generally have anti-inflammatory properties, which is consistent with their chemoprotective role in breast cancer. In contrast, synthetic xenoestrogens are proinflammatory and carcinogenic compounds that can increase the risk of breast cancer. This article also highlights important xenoestrogens with a particular focus on their role in inflammation and breast cancer. Improved understanding of the complex relationship between estrogens, inflammation, and breast cancer will guide clinical research on agents that could advance breast cancer prevention and therapy.

6.
Sci Rep ; 11(1): 10252, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986468

RESUMEN

Pancreatic neuroendocrine neoplasms (pNENs) are slow growing cancers of increasing incidence that lack effective treatments once they become metastatic. Unfortunately, nearly half of pNEN patients present with metastatic liver tumors at diagnosis and current therapies fail to improve overall survival. Pre-clinical models of pNEN metastasis are needed to advance our understanding of the mechanisms driving the metastatic process and for the development of novel, targeted therapeutic interventions. To model metastatic dissemination of tumor cells, human pNEN cell lines (BON1 and Qgp1) stably expressing firefly luciferase (luc) were generated and introduced into NSG immunodeficient mice by intracardiac (IC) or intravenous (IV) injection. The efficiency, kinetics and distribution of tumor growth was evaluated weekly by non-invasive bioluminescent imaging (BLI). Tumors formed in all animals in both the IC and IV models. Bioluminescent Qgp1.luc cells preferentially metastasized to the liver regardless of delivery route, mimicking the predominant site of pNEN metastasis in patients. By comparison, BON1.luc cells most commonly formed lung tumors following either IV or IC administration and colonized a wider variety of tissues than Qgp1.luc cells. These models provide a unique platform for testing candidate metastasis genes and anti-metastatic therapies for pNENs.


Asunto(s)
Mediciones Luminiscentes/métodos , Metástasis de la Neoplasia/diagnóstico por imagen , Neoplasias Pancreáticas/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Metástasis Linfática , Ratones , Ratones Endogámicos NOD , Metástasis de la Neoplasia/fisiopatología , Trasplante de Neoplasias , Neoplasias Primarias Secundarias , Células Neuroendocrinas/metabolismo , Células Neuroendocrinas/patología , Neoplasias Pancreáticas/fisiopatología
7.
Biomedicines ; 9(6)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199469

RESUMEN

Pancreatic neuroendocrine tumors (pNETs) are difficult-to-treat neoplasms whose incidence is rising. Greater understanding of pNET pathogenesis is needed to identify new biomarkers and targets for improved therapy. RABL6A, a novel oncogenic GTPase, is highly expressed in patient pNETs and required for pNET cell proliferation and survival in vitro. Here, we investigated the role of RABL6A in pNET progression in vivo using a well-established model of the disease. RIP-Tag2 (RT2) mice develop functional pNETs (insulinomas) due to SV40 large T-antigen expression in pancreatic islet ß cells. RABL6A loss in RT2 mice significantly delayed pancreatic tumor formation, reduced tumor angiogenesis and mitoses, and extended survival. Those effects correlated with upregulation of anti-angiogenic p19ARF and downregulation of proangiogenic c-Myc in RABL6A-deficient islets and tumors. Our findings demonstrate that RABL6A is a bona fide oncogenic driver of pNET angiogenesis and development in vivo.

8.
Clin Cancer Res ; 26(12): 2997-3011, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32086342

RESUMEN

PURPOSE: Malignant peripheral nerve sheath tumors (MPNST) are deadly sarcomas that lack effective therapies. In most MPNSTs, the retinoblastoma (RB1) tumor suppressor is disabled by hyperactivation of cyclin-dependent kinases (CDK), commonly through loss of CDK-inhibitory proteins such as p27(Kip1). RABL6A is an inhibitor of RB1 whose role in MPNSTs is unknown. To gain insight into MPNST development and establish new treatment options, we investigated RABL6A-RB1 signaling and CDK inhibitor-based therapy in MPNSTs. EXPERIMENTAL DESIGN: We examined patient-matched MPNSTs and precursor lesions by RNA sequencing (RNA-Seq) and IHC. Molecular and biological effects of silencing RABL6A and/or p27 in MPNST lines and normal human Schwann cells were determined. Tumor-suppressive effects of CDK inhibitors were measured in MPNST cells and orthotopic tumors. RESULTS: RABL6A was dramatically upregulated in human MPNSTs compared with precursor lesions, which correlated inversely with p27 levels. Silencing RABL6A caused MPNST cell death and G1 arrest that coincided with p27 upregulation, CDK downregulation, and RB1 activation. The growth-suppressive effects of RABL6A loss, and its regulation of RB1, were largely rescued by p27 depletion. Importantly, reactivation of RB1 using a CDK4/6 inhibitor (palbociclib) killed MPNST cells in vitro in an RABL6A-dependent manner and suppressed MPNST growth in vivo. Low-dose combination of drugs targeting multiple RB1 kinases (CDK4/6, CDK2) had enhanced antitumorigenic activity associated with potential MPNST cell redifferentiation. CONCLUSIONS: RABL6A is a new driver of MPNST pathogenesis that acts in part through p27-RB1 inactivation. Our results suggest RB1 targeted therapy with multiple pathway drugs may effectively treat MPNSTs.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Resistencia a Antineoplásicos , Neurofibrosarcoma/tratamiento farmacológico , Proteínas Oncogénicas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas de Unión a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neurofibrosarcoma/genética , Neurofibrosarcoma/metabolismo , Neurofibrosarcoma/patología , Proteínas Oncogénicas/genética , Proteínas de Unión a Retinoblastoma/genética , Transducción de Señal , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Unión al GTP rab/genética
9.
Clin Cancer Res ; 26(8): 2011-2021, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31937620

RESUMEN

PURPOSE: Pancreatic neuroendocrine tumors (pNETs) are uncommon malignancies noted for their propensity to metastasize and comparatively favorable prognosis. Although both the treatment options and clinical outcomes have improved in the past decades, most patients will die of metastatic disease. New systemic therapies are needed. EXPERIMENTAL DESIGN: Tissues were obtained from 43 patients with well-differentiated pNETs undergoing surgery. Gene expression was compared between primary tumors versus liver and lymph node metastases using RNA-Seq. Genes that were selectively elevated at only one metastatic site were filtered out to reduce tissue-specific effects. Ingenuity pathway analysis (IPA) and the Connectivity Map (CMap) identified drugs likely to antagonize metastasis-specific targets. The biological activity of top identified agents was tested in vitro using two pNET cell lines (BON-1 and QGP-1). RESULTS: A total of 902 genes were differentially expressed in pNET metastases compared with primary tumors, 626 of which remained in the common metastatic profile after filtering. Analysis with IPA and CMap revealed altered activity of factors involved in survival and proliferation, and identified drugs targeting those pathways, including inhibitors of mTOR, PI3K, MEK, TOP2A, protein kinase C, NF-kB, cyclin-dependent kinase, and histone deacetylase. Inhibitors of MEK and TOP2A were consistently the most active compounds. CONCLUSIONS: We employed a complementary bioinformatics approach to identify novel therapeutics for pNETs by analyzing gene expression in metastatic tumors. The potential utility of these drugs was confirmed by in vitro cytotoxicity assays, suggesting drugs targeting MEK and TOP2A may be highly efficacious against metastatic pNETs. This is a promising strategy for discovering more effective treatments for patients with pNETs.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Evaluación Preclínica de Medicamentos/métodos , Regulación Neoplásica de la Expresión Génica , Terapia Molecular Dirigida , Tumores Neuroendocrinos/genética , Neoplasias Pancreáticas/genética , Adulto , Anciano , Línea Celular Tumoral , Biología Computacional/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Pronóstico , RNA-Seq/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA