Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
BMC Vet Res ; 20(1): 127, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561720

RESUMEN

BACKGROUND: Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia (Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success as it endows promising results in therapies compared to traditional protocols. OBJECTIVE: Therefore, the current perspective is considered the first report to assess the anti-bacterial efficacy of titanium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia. METHODS: The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days. RESULTS: Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, and aggression) and depression of immune-antioxidant variables (complement 3, lysozyme activity, total antioxidant capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepatorenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes and immuno-histochemical alterations (very weak BCL-2 and potent caspase-3 immuno-expressions) were seen. Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue architectures. CONCLUSION: Overall, this report encompasses the key role of TDNG as an anti-bacterial agent for controlling P. putida infection and improving the health status of Nile tilapia.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Polietilenglicoles , Polietileneimina , Pseudomonas putida , Titanio , Animales , Antioxidantes , Nanogeles , Dieta , Suplementos Dietéticos , Alimentación Animal/análisis , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología
2.
J Therm Biol ; 121: 103837, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38552447

RESUMEN

Hypoxic aquatic environments occur more frequently as a result of climate change, thereby exerting challenges on the physiological and metabolic functions of aquatic animals. In this study, a model fish, zebrafish (Danio rerio) was used to observe the climate-induced hypoxic effect on the upper thermal limit (critical thermal maximum; CTmax), hemoglobin, and blood glucose levels, and abnormalities of erythrocytes at cellular and nuclear level. The value of CTmax decreased significantly under hypoxia (39.10 ± 0.96 °C) compared to normoxia (43.70 ± 0.91 °C). At CTmax, hemoglobin levels were much lower (9.33 ± 0.60 g/dL) and blood glucose levels were significantly higher (194.20 ± 11.33 mg/L) under hypoxia than they were under normoxia and at the beginning of the experiment. Increased frequencies of abnormalities in the erythrocytes at both cellular (fusion, twin, elongated, spindle and tear drop shaped) and nuclear (micronucleus, karyopyknosis, binuclei, nuclear degeneration and notched nuclei) levels were also found under hypoxia compared to normoxia. These results suggest that hypoxic conditions significantly alter the temperature tolerance and subsequent physiology in zebrafish. Our findings will aid in the development of effective management techniques for aquatic environments with minimum oxygen availability.


Asunto(s)
Glucemia , Eritrocitos , Hemoglobinas , Pez Cebra , Animales , Pez Cebra/fisiología , Hemoglobinas/metabolismo , Eritrocitos/metabolismo , Eritrocitos/fisiología , Glucemia/metabolismo , Glucemia/análisis , Hipoxia/fisiopatología , Termotolerancia , Oxígeno/metabolismo , Oxígeno/sangre , Temperatura
3.
Fish Physiol Biochem ; 50(2): 767-783, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38060081

RESUMEN

In the aquaculture industry, silica nanoparticles (SiNPs) have great significance, mainly for confronting diseases. Therefore, the present study aims to assess the antibacterial efficiency of SiNPs as a versatile trial against Aeromonas veronii infection in African catfish (Clarias gariepinus). Further, we investigated the influence of SiNPs in palliating the immune-antioxidant stress biochemical, ethological, and histopathological alterations induced by A. veronii. The experiment was conducted for 10 days, and about 120 fish were distributed into four groups at random, with 30 fish each. The first group is a control that was neither exposed to infection nor SiNPs. The second group (SiNPs) was vulnerable to SiNPs at a concentration of 20 mg/L in water. The third group was experimentally infected with A. veronii at a concentration of 1.5 × 107 CFU/mL. The fourth group (A. veronii + SiNPs) was exposed to SiNPs and infected with A. veronii. Results outlined that A. veronii infection induced behavioral alterations and suppression of immune-antioxidant responses that appeared as a clear decline in protein profile indices, complement 3, lysozyme activity, glutathione peroxidase, and total antioxidant capacity. The kidney and liver function biomarkers (creatinine, urea, alkaline phosphatase, and alanine aminotransferase) and lipid peroxide (malondialdehyde) were substantially increased in the A. veronii group, with marked histopathological changes and immunohistochemical alterations in these tissues. Interestingly, the exposure to SiNPs resulted in a clear improvement in all measured biomarkers and a noticeable regeneration of the histopathological changes. Overall, it will establish that SiNPs are a new, successful tool for opposing immunological, antioxidant, physiological, and histopathological alterations induced by A. veronii infection.


Asunto(s)
Antioxidantes , Bagres , Animales , Antioxidantes/metabolismo , Aeromonas veronii/metabolismo , Bagres/metabolismo , Estrés Oxidativo , Terapia de Inmunosupresión , Biomarcadores/metabolismo
4.
Fish Shellfish Immunol ; 138: 108842, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37209754

RESUMEN

Aeromonas veronii is a pathogenic bacterium associated with various diseases in aquaculture. However, few studies address the antibacterial activity using nanoparticles (NPs). Hence, the current study is innovative to evaluate the antibacterial efficacy of silica nanoparticles (SiNPs) against A. veronii infection in-vitro with a trial for treatment in-vivo. Primarily, we assessed the in-vitro antibacterial activity against A. veronii. Further, we investigated the hematological profile, immune-antioxidant response, and gene expression of African catfish (Clarias gariepinus) in response to SiNPs exposure and the A. veronii challenge. Fish (N = 120; weight: 90 ± 6.19 g) were distributed into four groups (30 fish/group) for a ten-days-treatment trial. The first (control) and second (SiNPs) groups were treated with 0 mg/L and 20 mg/L SiNPs in water, respectively. The third (A. veronii) and fourth (SiNPs + A. veronii) groups were treated with 0 mg/L and 20 mg/L SiNPs in water, respectively, and infected with A. veronii (1.5 × 107 CFU/mL). Results demonstrated that SiNPs displayed an in-vitro antibacterial activity against A. veronii with a 21 mm inhibitory zone. A. veronii infection caused a high mortality rate (56.67%) and substantial reductions in hematological indices and immune indicators [nitric oxide (NO) and immunoglobulin M (IgM)]. Additionally, marked decline in the level of antioxidants [superoxide dismutase (SOD), catalase (CAT), and reduced glutathione content (GSH)] as well as down-regulation in the immune-related genes [interleukins (IL-1ß and IL-8) and tumor necrosis factor-alpha (TNF-α)] and antioxidant-related genes [SOD1, glutathione peroxidase (GPx), and glutathione-S-transferase (GST)] were the consequences of A. veronii infection. Surprisingly, treatment of A. veronii-infected fish with SiNPs lessened the mortality rate, enhanced the blood picture, modulated the immune-antioxidant parameters, and resulted in gene up-regulation. Overall, this study encompasses the significant role of SiNPs, a new versatile tool for combating hematological, immuno-antioxidant alterations, and gene down-regulation induced by A. veronii infection and sustainable aquaculture production.


Asunto(s)
Bagres , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Nanopartículas , Animales , Antioxidantes/metabolismo , Aeromonas veronii/fisiología , Regulación hacia Abajo , Expresión Génica , Bagres/genética , Bagres/metabolismo
5.
Fish Shellfish Immunol ; 128: 574-581, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36007828

RESUMEN

Nanotechnology has recently played a key role in tackling many aquacultures issues. Hence, the present study targets the evaluation of dietary inclusion of nano iron oxide (nFe2O3) on growth performance, hematology, immune-antioxidant responses, ionic regulation and expression of related genes in Nile tilapia (Oreochromis niloticus). Fish were fed supplementary nFe2O3 at rates of zero (control), 0.5, and 1 g/kg diet for 30 days. Obtained data demonstrated that nFe2O3 significantly (P < 0.05) augmented growth performance (final weight and length, body mass gain, specific growth rate, feed conversion ratio, and length gain rate). Hematological picture {RBCs, Hb, MCV, MCH and MCHC, and leukocytes interpretations (WBCs and monocytes)}; and biochemical indexes including (AST and ALT; total protein; and glucose, and cortisol) were significantly (P < 0.05) improved in nFe2O3 supplemented groups. Plasma ionic concentration was also altered with nFe2O3 supplementation, and 1g nFe2O3 revealed the most marked increase in plasma (Na+) potassium (K+) levels. Similarly, IgM, nitrous oxide (NO), and lysozyme activity, plus superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities showed a remarkable improvement in 1g nFe2O3 group compared to the control. Expression of Insulin-Like Growth Factor-1 (IGF-1) and interleukin 1-ß (IL-1ß) genes were significantly up-regulated in nFe2O3 supplemented groups. Briefly, dietary nFe2O3 inclusion had enhanced properties on growth; hemato-biochemical; immune, antioxidative profiles; and related genes expression of O. niloticus, with a recommended concentration of 1g nFe2O3.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Expresión Génica , Glucosa/metabolismo , Glutatión Peroxidasa/metabolismo , Hidrocortisona/metabolismo , Inmunoglobulina M/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Interleucina-1/metabolismo , Muramidasa/metabolismo , Óxido Nitroso/metabolismo , Potasio/metabolismo , Superóxido Dismutasa/metabolismo
6.
Fish Shellfish Immunol ; 120: 360-368, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34910977

RESUMEN

In large-scale aquaculture, the fast growth rate of fish is positively influenced by feed additives such as medicinal plants. This is however; infectious disease may reduce fish growth and cause devastating economic loss. The present study investigated in vitro antibacterial efficacy of Mooseer (Allium hirtifolium) extract against Streptococcus iniae and its in vivo effects on growth, biochemical parameters, innate immunity of rainbow trout (Oncorhynchus mykiss). Therefore, six experimental diets were designed to include different levels of Mooseer from zero (as control), 5, 10, 15, 20, and 25 g per kg diet respectively referred to as M1 to M5. Results from the antibacterial evaluation showed that Mooseer extract inhibits S. iniae growth with MIC and MBC values of 128 and 256 µg ml-1. Appreciable results were obtained in the groups supplemented with Mooseer. Mooseer enhanced growth performance, and modulated serum biochemical and immunological parameters (total protein, albumin, triglyceride, glucose, cortisol, cholesterol, lysozyme, Ig, ACH50, ALP, and protease activity), and liver enzymes (ALT, AST and ALP). The greatest effects were found for higher doses of Mooseer supplementation (M4 and M5). Meanwhile, results from the survival rate of fish challenged with S. iniae showed higher survival in M2 and M4 treatments. The present findings suggest the beneficial use of Mooseer in rainbow trout diet, with 20 g kg-1 inclusion as the recommended dose.


Asunto(s)
Allium , Enfermedades de los Peces , Oncorhynchus mykiss , Extractos Vegetales , Infecciones Estreptocócicas , Allium/química , Alimentación Animal/análisis , Animales , Antibacterianos/farmacología , Dieta/veterinaria , Suplementos Dietéticos , Resistencia a la Enfermedad , Enfermedades de los Peces/microbiología , Inmunidad Innata , Oncorhynchus mykiss/inmunología , Extractos Vegetales/farmacología , Infecciones Estreptocócicas/veterinaria , Streptococcus iniae
7.
Fish Shellfish Immunol ; 124: 182-191, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35398527

RESUMEN

Currently, the intervention of plant by-products in the fish diet has gained tremendous attention owing to the economic and high nutritious value. The current study is a pioneer attempt to incorporate the apricot, Prunus armeniaca kernel powder (PAKP) into the Common carp, Cyprinus carpio diets, and assess its efficacy on growth, digestion, intestinal morphology, immunity, antioxidant capacity, and splenic cytokines expression, besides the antibacterial role against Aeromonas veronii infection. Apparently healthy fish (N = 120) with an initial body weight of 24.76 ± 0.03g were allotted in 12 glass aquaria (60 L) and randomly distributed into four groups (triplicates, 10 fish/aquarium). The control group (PAKP0) was fed a basal diet without additives. The second, third, and fourth groups were provided PAKP diets with various concentrations (2.5 (PAKP2.5), 5 (PAKP5), and 10 g kg-1 (PAKP10)) respectively. After 60 days (feeding trial), sub-samples of the fish (12 fish/group) were intraperitoneally injected with 1 × 107 CFU mL-1 of A. veronii. Results revealed that body weight gain, feed conversion ratio, and specific growth rates were significantly augmented in the PAKP10 group in comparison to the other groups. The dietary inclusion of PAKP at all concentrations boosted the digestive capacity and maintained the intestinal morphology (average villus length, villus width, and goblet cells count) with a marked improvement in PAKP10. Moreover, fish fed on PAKP10 followed by PAKP5 then PAKP2.5 diets had noticeably elevated values of immunological biomarkers (IgM, antiprotease, and lysozyme activity) and antioxidant capabilities (the total antioxidant capacity, superoxide dismutase, and reduced glutathione) as well as significant up-regulation of immune and antioxidant-related genes (TGF-ß2, TLR-2, TNF-α, IL-10, SOD, GPx, and GSS). Fourteen days post-infection with A. veronii, the highest relative percentage survival of fish was observed in PAKP10 (83.33%), followed by PAKP5 (66.67%), and PAKP2.5 (50%). Our results indicated that a dietary intervention with PAKP could promise growth, digestion, immunity, and protect C. carpio against A. veronii infection in a dose-dependent manner. This offers a framework for future application of such seeds as a growth promotor, immune-stimulant, and antioxidant, besides an alternative cheap therapeutic antibacterial agent for sustaining the aquaculture industry.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Prunus armeniaca , Aeromonas veronii , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Peso Corporal , Carpas/metabolismo , Citocinas/genética , Dieta/veterinaria , Suplementos Dietéticos , Resistencia a la Enfermedad , Extractos Vegetales , Prunus armeniaca/metabolismo
8.
Fish Shellfish Immunol ; 127: 672-680, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35817363

RESUMEN

Nutraceuticals have received increased attention in sustainable aquaculture. Consequently, the present study aimed to evaluate the dietary effects of Mucuna pruriens (MP) seed extract on growth performance, immune status, hepatic function, biochemical profiles, gonadal histology, and expression of immune-related genes in mono-sex Nile tilapia (Oreochromis niloticus). Fish were allocated into four groups and received MP at rates of 0 (control), 2, 4, and 6 g/kg diet, respectively, for 90 days. The results revealed that MP significantly (P<0.05) modulated growth performance (specific growth rate, final length, and length gain rate, body mass gain, and feed conversion ratio), lysozyme activity, and liver enzymes (AST, ALT). However, a non-significant effect on nitric oxide (NO) or immunoglobulin M (IgM) levels was detected, whereas the dietary inclusion of MP had a hypoglycemic effect. In terms of plasma globulin, albumin, globulin/albumin ratio, and cortisol, the MP receiving groups showed insignificant difference (P<0.05) when compared to controls, except for the 2 g MP-supplemented group. The lower inclusion concentration of MP (2 g/kg diet) demonstrated the best result (P < 0.05) for gonadosomatic index (GSI) and plasma testosterone level that was consistent with the histological findings reflecting an improvement in the testicular development compared with the control group. Expressions of complement component (C5) and interleukin 1-ß (IL-1ß) genes were significantly up-regulated in MP receiving groups. In conclusion, M. pruriens can be used as a safe natural economic feed additive and a low inclusion level of 2 g/kg diet is recommended to improve growth, enhance immunity, maintain liver functioning, improve testicular development, and to modulate immune-related genes in the mono-sex O. niloticus.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Mucuna , Albúminas , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Extractos Vegetales , Semillas
9.
Fish Shellfish Immunol ; 127: 340-348, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35772675

RESUMEN

The current perspective is a pioneer to assess the efficacy of Salvia officinalis leave powder (SOLP) on growth, intestinal enzymes, physiological and antioxidant status, immunological response, and gene expression of Common carp (Cyprinus carpio). We also looked into fish resistance after being challenged with Aeromonas sobria, a pathogenic zoonotic bacteria. Fish (N = 120) were fed four different experimental diets in triplicate for 8 weeks. The control diet (SOLP0 - without SOLP); meanwhile, the other three diets included SOLP of 2, 4, and 8 g kg-1 concentrations (SOLP2, SOLP4, and SOLP8), respectively. Findings demonstrated that fish fed SOLP4 and SOLP8 diets had better growth performance and improved digestion by noticeable enhancing lipase and amylase enzymes activity than other groups. Additionally, the antioxidant (superoxide dismutase and glutathione peroxidase) and immune activities (immunoglobulin M, nitric oxide, and antiprotease) clarified a significant increase (p < 0.05) in SOLP4 and SOLP8 groups. Enriched diets with SOLP4 and SOLP8 exhibited better expression of splenic genes (IL-1ß, IL-6, IL-10, TLR-2, and SOD), intestinal genes (Slc26a6) and (PepT1 or Slc15a1), and muscular genes (IGF-1 and SOD), while MSTN was down-regulated. After 8 weeks of the experimental trial, C. carpio challenged by A. sobria exhibited the highest cumulative mortality (66.67%), while SOLP8-dietary intervention showed the best results in enhancing the fish resistance against A. sobria by lessening mortalities to 13.33% followed by SOLP4 diet (20%). The outcomes indicate that the expression of splenic, muscular, and intestinal genes confirm the efficacy of SOLP on enhancing growth, digestion, and immune-antioxidant status, and recommend the potential use of SOLP especially at 4 g kg-1 level as a valuable natural economic diet additive in C. carpio culture for sustaining aquaculture.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Salvia officinalis , Aeromonas , Aeromonas hydrophila/fisiología , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Carpas/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Infecciones por Bacterias Gramnegativas/veterinaria , Salvia officinalis/metabolismo , Superóxido Dismutasa
10.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806904

RESUMEN

This study was conducted to compare the effects of commercially available (C) and green synthesized (GS) Zinc oxide nanoparticles (ZnO-NPs) on immunological responses of common carp (Cyprinus carpio) skin mucus. GS ZnO-NPs were generated using Thymus pubescent and characterized by UV-vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). Fish (n = 150) were randomly allocated into five groups in triplicate and received a waterborne concentration of 0% (control), 25%, and 50% of LC50 96 h of commercially available (C1 and C2) and green synthesized ZnO-NPs (GS1 and GS2) for 21 days. Results from XRD displayed ZnO-NPs with 58 nm in size and UV-vis DRS, EDX, and FT-IR analysis showed that some functional groups from plant extract bonded to the surface of NPs. The SEM images showed that ZnO-NPs have conical morphology. Acute toxicity study showed a higher dose of LC5096h for green synthesized ZnO-NPs (78.9 mg.L-1) compared to the commercial source (59.95 mg.L-1). The highest activity of lysozyme and alternative complement activity (ACH50) were found in control and GS1 groups. A significant decrease in alkaline phosphatase activity (ALP) was found in C1 and C2 groups compared to other treatments. Protease activity (P) was significantly decreased in the C2 group compared to the control and GS groups. Total immunoglobulin (total Ig) content was the highest in the control. In addition, total Ig in the GS1 group was higher than GS2. The exposure to ZnO-NPs lowered total protein content in all experimental groups when compared to control. Present findings revealed lower induced immunosuppressive effects by green synthesized ZnO-NPs on key parameters of fish skin mucus.


Asunto(s)
Carpas/fisiología , Factores Inmunológicos/síntesis química , Factores Inmunológicos/farmacología , Nanopartículas del Metal/química , Moco/metabolismo , Piel/efectos de los fármacos , Piel/metabolismo , Óxido de Zinc/química , Animales , Técnicas de Química Sintética , Tecnología Química Verde , Nanopartículas del Metal/ultraestructura , Análisis Espectral
11.
Dis Aquat Organ ; 141: 1-14, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32940246

RESUMEN

This study investigated the antifungal activity of 5 essential oils (EOs) towards yeasts recovered from diseased fishes; and focused on the efficacy of one EO (carvacrol) on growth performance, non-specific immunity, and disease resistance of Nile tilapia Oreochromis niloticus against Cryptococcus uniguttulatus challenge. Thymoquinone, thymol, carvacrol, eugenol, and cinnamon were first tested in vitro against 20 clinical yeast strains in comparison with antifungal drugs (fluconazole, ketoconazole, itraconazole, amphotericin B, nystatin, and clotrimazole) using disc diffusion and broth microdilution methods. For the in vivo challenge, fish (n = 150) were divided into 5 groups (carvacrol prophylaxis, carvacrol treatment, itraconazole treatment, unchallenged control, and positive control; 30 fish group-1) with 3 replicates. Phagocytic activity, reactive oxygen species production, reactive nitrogen species production, myeloperoxidase, lysozyme activity, and total immunoglobulins were tested before and after challenge. Relative percent survival (RPS) and mortality percent were determined as indicators for functional immunity. EOs displayed divergent degrees of antifungal activity, and carvacrol was the most effective against the tested yeasts. The dietary additive of carvacrol significantly enhanced growth performance, all immunological parameters, and the RPS values (90%) compared to other treatments. This unique experimental model indicates that carvacrol seems promising not only for enhancing immunity and promoting fish growth, but also for controlling emerging fungal infections. Future studies should investigate different concentrations of carvacrol as well as its antifungal activity in different fish species.


Asunto(s)
Cíclidos , Criptococosis/veterinaria , Cryptococcus , Enfermedades de los Peces , Micosis/veterinaria , Animales , Cimenos , Dieta , Aceites Volátiles
12.
Dis Aquat Organ ; 142: 147-160, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33331282

RESUMEN

Zinc (Zn) is an important trace element in fish diets that is required for growth, immunity and antioxidant defense mechanisms. The current study assessed the effects of both organic and nanoparticle zinc oxide (ZnO and ZnO-NPs, respectively) on growth performance, immune response and the antimicrobial effect against Pseudomonas aeruginosa in African catfish Clarias gariepinus. Fish were fed either a control diet or diets supplemented with organic ZnO at concentrations of 20 and 30 mg kg-1 or ZnO-NPs at concentrations of 20 and 30 mg kg-1. After 60 d, a subset of the fish was injected intraperitoneally with 3 × 107 CFU ml-1 of P. aeruginosa. Results showed that body weight gain, feed conversion ratio and specific growth rates were significantly increased in ZnO-NPs20 compared to all other groups. The dietary supplementation with 20 mg kg-1 of ZnO-NPs improved the antioxidant status of fish. Moreover, IgM, lysozyme and nitric oxide showed a significant increase in the fish which received the ZnO-NPs20-supplemented diet. A significant upregulation of growth and stress-related genes was seen in the ZnO-NPs20-supplemented group compared to other groups. However, there was no significant difference in the expression of immune-related genes among ZnO-NPs20, ZnO-NPs30 and ZnO30 groups. These findings highlight the potential use of nano-ZnO for improving growth performance, antioxidant status, immunological status and antibacterial activity against P. aeruginosa in African catfish.


Asunto(s)
Bagres , Óxido de Zinc , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Resistencia a la Enfermedad , Inmunomodulación
13.
Sci Rep ; 14(1): 2940, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316807

RESUMEN

Obesity upsurges the risk of developing cardiovascular disease, primarily heart failure and coronary heart disease. Chia seeds have a high concentration of dietary fiber and increased concentrations of anti-inflammatoryand antioxidant compounds. They are used for weight loss plus enhancing blood glucose and lipid profile. The current perspective was commenced to examine the protective influence of chia seeds ingestion on cardiovascular disease risk factors in high-fat diet-fed rats. Forty male albino rats (with an initial body weight of 180-200 g) were used in this study. Rats were randomly and equally divided into 4 groups: Group I was the control group and group II was a control group with chia seeds supplementation. Group III was a high-fat diet group (HFD) that received HFD for 10 weeks and group IV was fed on HFD plus chia seeds for 10 weeks. In all groups Echocardiographic measurements were performed, initial and final BMI, serum glucose, AC/TC ratio, lipid profile, insulin (with a computed HOMA-IR), creatinine phosphokinase-muscle/brain (CPK-MB), CRP, and cardiac troponin I (cTnI) and MAP were estimated. Whole heart weight (WHW) was calculated, and then WHW/body weight (BW) ratio was estimated. Eventually, a histopathological picture of cardiac tissues was performed to assess the changes in the structure of the heart under Haematoxylin and Eosin and Crossmon's trichrome stain. Ingestion of a high diet for 10 weeks induced a clear elevation in BMI, AC/ TC, insulin resistance, hyperlipidemia, CRP, CPK-MB, and cTnI in all HFD groups. Moreover, there was a significant increase in MAP, left ventricular end diastolic diameter (LVEDD), and left ventricular end systolic diameter (LVESD). Furthermore, histological cardiac examination showed structural alteration of the normal structure of the heart tissue with an increase in collagen deposition. Also, the Bcl-2 expression in the heart muscle was significantly lower, but Bax expression was significantly higher. Chia seeds ingestion combined with HFD noticeably ameliorated the previously-recorded biochemical biomarkers, hemodynamic and echocardiography measures, and histopathological changes. Outcomes of this report reveal that obesity is a hazard factor for cardiovascular disease and chia seeds could be a good candidate for cardiovascular system protection.


Asunto(s)
Enfermedades Cardiovasculares , Cardiopatías , Ratas , Masculino , Animales , Dieta Alta en Grasa/efectos adversos , Ratas Wistar , Enfermedades Cardiovasculares/complicaciones , Inflamación/complicaciones , Obesidad/metabolismo , Lípidos , Factores de Riesgo , Estrés Oxidativo , Cardiopatías/complicaciones , Semillas/metabolismo
14.
Sci Rep ; 14(1): 2752, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307943

RESUMEN

The present work is aimed to assess the protective influence of zinc oxide resveratrol nanoparticles against oxidative stress-associated testicular dysfunction. The number of 50 male albino rats were randomly separated into five groups (n = 10): Group I, control: rats gavage distilled water orally; Group II, Levofloxacin: rats that administered Levofloxacin (LFX) softened in distilled water at a dosage of 40 mg/kg-1 BW orally every other day; Group III, Zn-RSV: rats administered with Zn-RSV (zinc oxide resveratrol in distilled water at a dose 20 mg/kg-1 BW orally every other day; Group IV, (LFX + Zn-RSV): rats that were administered with Levofloxacin along with Zn-RSV nPs; Group V, Levofloxacin + Zn: rats were administered with Levofloxacin and Zno at a dose of 20 mg/kg-1 BW orally every other day as mentioned before. This study lasted for 2 months. Sera were collected to assess luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone values. Testicular tissues were utilized to evaluate levels of superoxide dismutase (SOD), nitric oxide (NO), malondialdehyde (MDA), and catalase (CAT). Semen samples were utilized to measure their quality (motility, concentration, and vitality). Histopathological and immune histochemical techniques investigated the morphological changes in the testis. Rats treated with Levofloxacin showed significantly lower levels of serum LH, testosterone, FSH, testicular enzymatic NO, catalase, SOD, BAX, and BCL-2 immune reactivity and sperm quality but significantly greater testicular malondialdehyde and caspase-3 immuno-reactivity Compared to both control and zinc oxide resveratrol treatment. Zinc oxide resveratrol nanoparticles ameliorated the harmful side effects of Levofloxacin. Improvements were more pronounced in the co-treatment (LFX + Zn-RSV) Zinc oxide resveratrol group than in the co-treatment (LFX + Zno) Zinc oxide group. Zinc oxide resveratrol nanoparticles could be a possible solution for levofloxacin oxidative stress-induced fertility problems.


Asunto(s)
Nanopartículas , Enfermedades Testiculares , Óxido de Zinc , Humanos , Ratas , Masculino , Animales , Resveratrol/farmacología , Resveratrol/metabolismo , Óxido de Zinc/farmacología , Catalasa/metabolismo , Levofloxacino/farmacología , Ratas Wistar , Semen , Testículo/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Testosterona , Hormona Folículo Estimulante , Hormona Luteinizante , Superóxido Dismutasa/metabolismo , Malondialdehído/metabolismo , Agua/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-36828347

RESUMEN

The present study evaluated the effect of chronic exposure to oxyfluorfen (OXY) on different physiological responses of male African catfish, Clarias gariepinus, and the ameliorative effect of Chlorella vulgaris. The fish (160 ± 5.10 g) were exposed to 1/20 LC50 of OXY (0.58 mg/L) for 60 consecutive days with or without co-administration of C. vulgaris (25 g/kg diet) in triplicate groups. The results revealed that chronic exposure to a sublethal level of OXY induced severe anemia and leukopenia. OXY-exposed fish experienced hypoproteinemia, marked lower AchE levels, and a significant increase in glucose, liver, and kidney function biomarkers. The DNA fragmentation of the liver increased by 15 % in fish compared to the control. On the other hand, lipid peroxidation, superoxide dismutase, and catalase activities were markedly increased in the liver and testes homogenates of the OXY-exposed fish. Meanwhile, total antioxidant capacity and glutathione S-transferase levels declined in the same tissues. Exposure to OXY induced a significant reduction in testosterone and luteinizing hormone levels and a significant increase in follicle stimulating hormone and estradiol. Meanwhile, C. vulgaris dietary supplementation succeeded in alleviating the negative impact of OXY on hematobiochemical parameters and restoring the antioxidant balance in the liver and testes. Furthermore, it ameliorated endocrine disruption and repaired sex hormone levels. In conclusion, exposure to OXY could induce systemic stress, oxidative stress, and endocrine disruption in male C. gariepinus. The dietary supplementation of C. vulgaris could be a potential protective strategy against the toxicity of OXY.


Asunto(s)
Bagres , Chlorella vulgaris , Masculino , Animales , Antioxidantes/metabolismo , Chlorella vulgaris/metabolismo , Bagres/metabolismo , Estrés Oxidativo , Hormonas Esteroides Gonadales
16.
Artículo en Inglés | MEDLINE | ID: mdl-36174907

RESUMEN

Nanotechnology has revealed profound possibilities for the applications in applied sciences. The nanotechnology works based on nanoparticles. Among nanoparticles, silver nanoparticles largely introduced into aquatic environments during fabrication. Which cause severe contamination in the environment specially in freshwater fish. Therefore, the current study was a pioneer attempt to use the animal blood to fabricate AgNPs and investigate their toxicity in Cyprinus carpio (C. carpio) by recording mortality, tissue bioaccumulation, and influence on intestinal bacterial diversity. For this purpose, fish groups were exposed to different concentrations of B-AgNPs including 0.03, 0.06, and 0.09 mg/L beside the control group for 1, 10, and 20 days. Initially, the highest concentration caused mortality. The results revealed that B-AgNPs were significantly (p < 0.005) accumulated in the liver followed by intestines, gills, and muscles. In addition, the accumulation of B-AgNPs in the intestine led to bacterial dysbiosis in Cyprinus carpio. At the phylum level, Tenericutes, Bacteroidetes, and Planctomycetes were gradually decreased at the highest concentration of B-AgNPs (0.09 mg/L) on days 1, 10, and 20 days. The genera Cetobacterium and Luteolibactor were increased at the highest concentration on day 20. Moreover, the principal coordinate analysis (PCoA) based on Bray-Curtis showed that the B-AgNPs had led to a variation in the intestinal bacterial community. Based on findings, the B-AgNPs induced mortality, and residual deposition in different tissues, and had a stress influence on intestinal homeostasis by affecting the intestinal bacterial community in C. carpio which could have a significant effect on fish growth.


Asunto(s)
Carpas , Nanopartículas del Metal , Contaminantes Químicos del Agua , Animales , Plata/toxicidad , Nanopartículas del Metal/toxicidad , Disbiosis/inducido químicamente , Branquias , Bacterias , Contaminantes Químicos del Agua/toxicidad
17.
Gels ; 9(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37623096

RESUMEN

Heavy metal toxicity is an important issue owing to its harmful influence on fish. Hence, this study is a pioneer attempt to verify the in vitro and in vivo efficacy of a magnetite (Fe3O4) nanogel (MNG) in mitigating waterborne lead (Pb) toxicity in African catfish. Fish (n = 160) were assigned into four groups for 45 days. The first (control) and second (MNG) groups were exposed to 0 and 1.2 mg L-1 of MNG in water. The third (Pb) and fourth (MNG + Pb) groups were exposed to 0 and 1.2 mg L-1 of MNG in water and 69.30 mg L-1 of Pb. In vitro, the MNG caused a dramatic drop in the Pb level within 120 h. The Pb-exposed group showed the lowest survival (57.5%) among the groups, with substantial elevations in hepato-renal function and lipid peroxide (MDA). Moreover, Pb exposure caused a remarkable decline in the protein-immune parameters and hepatic antioxidants, along with higher Pb residual deposition in muscles and obvious histopathological changes in the liver and kidney. Interestingly, adding aqueous MNG to Pb-exposed fish relieved these alterations and increased survivability. Thus, MNG is a novel antitoxic agent against Pb toxicity to maintain the health of C. gariepinus.

18.
Tissue Cell ; 83: 102156, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37437332

RESUMEN

The main goal of the current report is to assess the protective impacts of chia seeds against obesity-induced ovarian dysfunctions with a trial to elucidate the mechanism of action. Forty rats were divided into 4 groups including lean untreated, lean consuming chia seeds, obese untreated, and rats consumed high-fat diet (HFD) mixed with ground chia seeds for 10 weeks. Anthropometric measures including visceral fat, peri-ovarian fat, ovarian weights, and duration of the estrous cycle were computed. Serum luteinizing (LH), follicular stimulating (FSH), progesterone, estradiol hormones, and tumor necrosis-α (TNF-α) were estimated. Ovarian histopathology and immunohistochemistry (CD31) were performed. Results showed that chia seeds clearly reduced obesity and induced alteration in anthropometric measures with a clear increase in LH and progesterone. Such seeds notably reversed histopathological alteration and reduced TNF-α, and CD31 induced by HFD. Conclusively, chia seeds have a potential protective role against obesity-induced ovarian dysfunction owing to their anti-inflammatory properties.


Asunto(s)
Salvia hispanica , Salvia , Ratas , Animales , Factor de Necrosis Tumoral alfa , Progesterona , Salvia/química , Obesidad/complicaciones , Semillas/química
19.
Artículo en Inglés | MEDLINE | ID: mdl-35429652

RESUMEN

The use of nano-sized materials is increasingly growing, while consequent health and environmental risks are still disputed. On the other hand, plant extracts have been reported to improve fish general health status and enhance antioxidant capacity. Thus, the present study was aimed to assess potential effects of Allium hirtifolium extract (AHE) to fortify antioxidant responses of Common carp (Cyprinus carpio) exposed to foodborne Zinc oxide nanoparticles (ZnO-NPs). Five hundred and forty fish were randomly allocated into 18 tanks and received six diets including a basal diet (as control), basal diet incorporated with either 13 mg/kg (ZnO-25) or 26 mg/kg (ZnO-50) of ZnO-NPs, 1.5% AHE (AHE-1.5), and similar concentrations of ZnO-NPs plus AHE (ZnO-25-AHE) and (ZnO-50-AHE) for a period of 30 days. Results revealed that blood indices, stress biomarkers (glucose and cortisol), and antioxidant parameters and genes in AHE-1.5 group were significantly modulated and improved when compared to other groups (P < 0.05). In AHE-enriched groups, serum and liver tissue antioxidative parameters were enhanced as reflected in a noticeable decrease in malondialdehyde value and an increase in catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. However, current results showed that diets incorporated with ZnO-NPs elevated the stress parameters besides a significant reduction for most measured biochemical parameters and AHE supplementation ameliorated these effects in terms of improving antioxidant parameters. In ZnO-25-AHE, and ZnO-50-AHE, the values for expression of GPx were found significantly (P < 0.05) different from that of ZnO-25 and ZnO-50. On the contrary, SOD showed a non-significant difference (P > 0.05) among control, ZnO-25, and ZnO-50-AHE, also in-between ZnO-25 and ZnO-25-AHE. The present results indicate that AHE supplementation could trigger antioxidant responses both at tissue and molecular levels suggesting its outstanding protective effects against foodborne toxicity of ZnO-NPs in Common carp.


Asunto(s)
Allium , Carpas , Nanopartículas , Óxido de Zinc , Animales , Allium/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Carpas/metabolismo , Estrés Oxidativo , Extractos Vegetales/farmacología , Óxido de Zinc/toxicidad
20.
Pathogens ; 12(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36678400

RESUMEN

The present context is a pioneer attempt to verify the ability of copepod, Lernanthropus kroyeri (L. kroyeri), to uptake and accumulate heavy metals. We primarily assess the prevalence of the parasite in various seasons and its clinical signs, as well as post-mortem changes in sea bass (Moron labrax). The morphological features of the parasite using a light microscope, the bioaccumulation of heavy metals in the tissues of both L. kroyeri and M. labrax (gills, muscles) using Flame Atomic Absorption Spectrometry, and the histopathological alterations were monitored. Fish (n = 200) were obtained from Ezbet Elborg and examined for the parasite, L. kroyeri. The results revealed that the total infection was recorded at 86%. The infested fish exhibited excessive mucous and ulceration at the site of attachment. The post-mortem lesion in the gills revealed a marbling appearance with destructed filaments. Various heavy metals (Zn, Co, Cu, and Cd) were detected in the tissues of L. kroyeri and M. labrax and, surprisingly, L. kroyeri had the ability to uptake and accumulate a high amount of Zn in its tissues. Infested fish accumulated a lower concentration of Zn in their tissue compared with the non-infested ones. Within the host tissue, the accumulation of Zn was higher in the gills compared with the muscles. The histopathological findings demonstrated scattered parasitic elements with the destruction of the gill lamellae. Taken together, we highlight the potential role of L. kroyeri to eliminate Zn and it can be utilized as a bio-indicator for metal monitoring studies for sustaining aquaculture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA