Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
2.
Genet Med ; 19(1): 104-111, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27362913

RESUMEN

PURPOSE: The study's purpose was to delineate the genetic mutations that cause classic nonketotic hyperglycinemia (NKH). METHODS: Genetic results, parental phase, ethnic origin, and gender data were collected from subjects suspected to have classic NKH. Mutations were compared with those in the existing literature and to the population frequency from the Exome Aggregation Consortium (ExAC) database. RESULTS: In 578 families, genetic analyses identified 410 unique mutations, including 246 novel mutations. 80% of subjects had mutations in GLDC. Missense mutations were noted in 52% of all GLDC alleles, most private. Missense mutations were 1.5 times as likely to be pathogenic in the carboxy terminal of GLDC than in the amino-terminal part. Intragenic copy-number variations (CNVs) in GLDC were noted in 140 subjects, with biallelic CNVs present in 39 subjects. The position and frequency of the breakpoint for CNVs correlated with intron size and presence of Alu elements. Missense mutations, most often recurring, were the most common type of disease-causing mutation in AMT. Sequencing and CNV analysis identified biallelic pathogenic mutations in 98% of subjects. Based on genotype, 15% of subjects had an attenuated phenotype. The frequency of NKH is estimated at 1:76,000. CONCLUSION: The 484 unique mutations now known in classic NKH provide a valuable overview for the development of genotype-based therapies.Genet Med 19 1, 104-111.


Asunto(s)
Aminometiltransferasa/genética , Complejo Glicina-Descarboxilasa/genética , Glicina-Deshidrogenasa (Descarboxilante)/genética , Hiperglicinemia no Cetósica/genética , Alelos , Dihidrolipoamida Deshidrogenasa/genética , Exones/genética , Femenino , Pruebas Genéticas , Genotipo , Glicina/genética , Glicina/metabolismo , Humanos , Hiperglicinemia no Cetósica/diagnóstico , Hiperglicinemia no Cetósica/patología , Intrones , Masculino , Mutación Missense
3.
Ann Neurol ; 78(4): 606-18, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26179960

RESUMEN

OBJECTIVE: Nonketotic hyperglycinemia is a neurometabolic disorder characterized by intellectual disability, seizures, and spasticity. Patients with attenuated nonketotic hyperglycinemia make variable developmental progress. Predictive factors have not been systematically assessed. METHODS: We reviewed 124 patients stratified by developmental outcome for biochemical and molecular predictive factors. Missense mutations were expressed to quantify residual activity using a new assay. RESULTS: Patients with severe nonketotic hyperglycinemia required multiple anticonvulsants, whereas patients with developmental quotient (DQ) > 30 did not require anticonvulsants. Brain malformations occurred mainly in patients with severe nonketotic hyperglycinemia (71%) but rarely in patients with attenuated nonketotic hyperglycinemia (7.5%). Neonatal presentation did not correlate with outcome, but age at onset ≥ 4 months was associated with attenuated nonketotic hyperglycinemia. Cerebrospinal fluid (CSF) glycine levels and CSF:plasma glycine ratio correlated inversely with DQ; CSF glycine > 230 µM indicated severe outcome and CSF:plasma glycine ratio ≤ 0.08 predicted attenuated outcome. The glycine index correlated strongly with outcome. Molecular analysis identified 99% of mutant alleles, including 96 novel mutations. Mutations near the active cleft of the P-protein maintained stable protein levels. Presence of 1 mutation with residual activity was necessary but not sufficient for attenuated outcome; 2 such mutations conferred best outcome. Divergent outcomes for the same genotype indicate a contribution of other genetic or nongenetic factors. INTERPRETATION: Accurate prediction of outcome is possible in most patients. A combination of 4 factors available neonatally predicted 78% of severe and 49% of attenuated patients, and a score based on mutation severity predicted outcome with 70% sensitivity and 97% specificity.


Asunto(s)
Glicina/genética , Glicina/metabolismo , Hiperglicinemia no Cetósica/genética , Hiperglicinemia no Cetósica/metabolismo , Mutación Missense/genética , Animales , Células COS , Chlorocebus aethiops , Femenino , Glicina/química , Humanos , Hiperglicinemia no Cetósica/diagnóstico , Lactante , Recién Nacido , Masculino , Valor Predictivo de las Pruebas , Pronóstico , Estructura Secundaria de Proteína
4.
J Biol Chem ; 280(11): 9802-12, 2005 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-15644336

RESUMEN

2-Hydroxyfatty acids, constituents of brain cerebrosides and sulfatides, were previously reported to be degraded by an alpha-oxidation system, generating fatty acids shortened by one carbon atom. In the current study we used labeled and unlabeled 2-hydroxyoctadecanoic acid to reinvestigate the degradation of this class of lipids. Both in intact and broken cell systems formate was identified as a main reaction product. Furthermore, the generation of an n-1 aldehyde was demonstrated. In permeabilized rat hepatocytes and liver homogenates, studies on cofactor requirements revealed a dependence on ATP, CoA, Mg(2+), thiamine pyrophosphate, and NAD(+). Together with subcellular fractionation data and studies on recombinant enzymes, this led to the following picture. In a first step, the 2-hydroxyfatty acid is activated to an acyl-CoA; subsequently, the 2-hydroxy fatty acyl-CoA is cleaved by 2-hydroxyphytanoyl-CoA lyase, to formyl-CoA and an n-1 aldehyde. The severe inhibition of formate generation by oxythiamin treatment of intact fibroblasts indicates that cleavage through the thiamine pyrophosphate-dependent 2-hydroxyphytanoyl-CoA lyase is the main pathway for the degradation of 2-hydroxyfatty acids. The latter protein was initially characterized as an essential enzyme in the peroxisomal alpha-oxidation of 3-methyl-branched fatty acids such as phytanic acid. Our findings point to a new role for peroxisomes in mammals, i.e. the breakdown of 2-hydroxyfatty acids, at least the long chain 2-hydroxyfatty acids. Most likely, the more abundant very long chain 2-hydroxyfatty acids are degraded in a similar manner.


Asunto(s)
Liasas de Carbono-Carbono/química , Ácidos Grasos/química , Peroxisomas/metabolismo , Aldehídos/química , Animales , Unión Competitiva , Encéfalo/metabolismo , Liasas de Carbono-Carbono/fisiología , Coenzima A/metabolismo , Relación Dosis-Respuesta a Droga , Ácidos Grasos/metabolismo , Fibroblastos/metabolismo , Formiatos/química , Hepatocitos/metabolismo , Humanos , Cinética , Metabolismo de los Lípidos , Hígado/metabolismo , Magnesio/química , Masculino , Ratones , Modelos Químicos , NAD/química , Oxígeno/metabolismo , Oxitiamina/química , Ácido Fitánico/química , Ratas , Ratas Wistar , Proteínas Recombinantes/química , Fracciones Subcelulares , Tiamina Pirofosfato/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA