Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36234993

RESUMEN

Malachite green (MG) dye is a common environmental pollutant that threatens human health and the integrity of the Earth's ecosystem. The aim of this study was to investigate the potential biodegradation of MG dye by actinomycetes species isolated from planted soil near an industrial water effluent in Cairo, Egypt. The Streptomyces isolate St 45 was selected according to its high efficiency for laccase production. It was identified as S. exfoliatus based on phenotype and 16S rRNA molecular analysis and was deposited in the NCBI GenBank with the gene accession number OL720220. Its growth kinetics were studied during an incubation time of 144 h, during which the growth rate was 0.4232 (µ/h), the duplication time (td) was 1.64 d, and multiplication rate (MR) was 0.61 h, with an MG decolorization value of 96% after 120 h of incubation at 25 °C. Eleven physical and nutritional factors (mannitol, frying oil waste, MgSO4, NH4NO3, NH4Cl, dye concentration, pH, agitation, temperature, inoculum size, and incubation time) were screened for significance in the biodegradation of MG by S. exfoliatus using PBD. Out of the eleven factors screened in PBD, five (dye concentration, frying oil waste, MgSO4, inoculum size, and pH) were shown to be significant in the decolorization process. Central composite design (CCD) was applied to optimize the biodegradation of MG. Maximum decolorization was attained using the following optimal conditions: food oil waste, 7.5 mL/L; MgSO4, 0.35 g/L; dye concentration, 0.04 g/L; pH, 4.0; and inoculum size, 12.5%. The products from the degradation of MG by S. exfoliatus were characterized using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The results revealed the presence of several compounds, including leuco-malachite green, di(tert-butyl)(2-phenylethoxy) silane, 1,3-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,4-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,2-benzenedicarboxylic acid, di-n-octyl phthalate, and 1,2-benzenedicarboxylic acid, dioctyl ester. Moreover, the phytotoxicity, microbial toxicity, and cytotoxicity tests confirmed that the byproducts of MG degradation were not toxic to plants, microbes, or human cells. The results of this work implicate S. exfoliatus as a novel strain for MG biodegradation in different environments.


Asunto(s)
Contaminantes Ambientales , Streptomyces , Biodegradación Ambiental , Colorantes/química , Ecosistema , Ésteres , Humanos , Lacasa , Manitol , ARN Ribosómico 16S/genética , Colorantes de Rosanilina , Silanos , Suelo , Streptomyces/genética , Streptomyces/metabolismo , Agua
2.
Molecules ; 26(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671833

RESUMEN

Our present study was designed to investigate the role of both Trichoderma harzianum and chamomile (Matricaria chamomilla L.) flower extract in mutual reaction against growth of Pythium ultimum. In vitro, the activity of chamomile extract was found to reduce the radial growth of Pythium ultimum up to 30% compared to the control. Whereas, the radial growth reduction effect of T. harzianum against P. ultimum reached 81.6% after 120 h. Data also showed the productivity of total phenolics and total flavonoids by T. harzianum, was 12.18 and 6.33 mg QE/100 mL culture filtrate, respectively. However, these compounds were determined in chamomile flower extract at concentrations of 75.33 and 24.29 mg QE/100 mL, respectively. The fractionation of aqueous extract of chamomile flower using HPLC provided several polyphenolic compounds such as pyrogallol, myricetin, rosemarinic acid, catechol, p-coumaric acid, benzoic acid, chlorogenic acid and other minor compounds. In vivo, the potentiality of T. harzianum with chamomile flower extract against Pythium pathogen of bean was investigated. Data obtained showed a reduction in the percentage of rotted seed and infected seedling up to 28 and 8%, respectively. Whereas, the survival increased up to 64% compared to other ones. There was also a significant promotion in growth features, total chlorophyll, carotenoids, total polyphenols and flavonoids, polyphenol-oxidase and peroxidase enzymes compared to other ones. To the best of our knowledge, there are no reported studies that included the mutual association of fungus, T. harzianum with the extract taken from the chamomile flower against P. ultimum, either in vitro or in vivo. In conclusion, the application of both T. harzianum and/or M. chamomilla extracts in the control of bean Pythium pathogen showed significant results.


Asunto(s)
Manzanilla/química , Flavonoides/farmacología , Flores/química , Hypocreales/química , Fenoles/farmacología , Extractos Vegetales/farmacología , Pythium/efectos de los fármacos , Flavonoides/química , Flavonoides/aislamiento & purificación , Hypocreales/metabolismo , Fenoles/química , Fenoles/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Pythium/crecimiento & desarrollo , Pythium/patogenicidad
3.
Molecules ; 26(13)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206976

RESUMEN

New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine--C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3',2':4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 µM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3-49.0, 19.3-55.5, 22.7-44.8, and 36.8-70.7 µM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.


Asunto(s)
Antineoplásicos/farmacología , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Ensayos de Selección de Medicamentos Antitumorales/métodos , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Piridinas/química , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/química , Relación Dosis-Respuesta a Droga , Doxorrubicina/farmacología , Diseño de Fármacos , Humanos , Imidazoles/química , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirazoles/química , Piridinas/síntesis química , Piridinas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Relación Estructura-Actividad Cuantitativa
4.
Genes (Basel) ; 14(4)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37107541

RESUMEN

Pyoderma is a common skin infection predominantly caused by Staphylococcus aureus. In addition to methicillin resistance, this pathogen is resistant to many other antibiotics, which ultimately limits the available treatment options. Therefore, the present study aimed to compare the antibiotic-resistance pattern, to detect the mecA gene and the genes encoding microbial surface component recognizing adhesive matrix molecules (MSCRAMMs) in S. aureus isolates. A total of 116 strains were isolated from patients suffering with pyoderma. Disk diffusion assay was opted to perform antimicrobial susceptibility testing of the isolates. Out of the isolates tested, 23-42.2% strains appeared susceptible to benzylpenicillin, cefoxitin, ciprofloxacin and erythromycin. While linezolid was found to be the most effective anti-staphylococcal drug, followed by rifampin, chloramphenicol, clindamycin, gentamicin and ceftaroline. Out of 116 isolates, 73 (62.93%) were methicillin-resistant S. aureus (MRSA). Statistically significant (p ≤ 0.05) differences in antibiotic resistance patterns between MRSA and methicillin-susceptible S. aureus (MSSA) were found. A significant association of resistance to ceftaroline, rifampin, tetracycline, ciprofloxacin, clindamycin, trimethoprim-sulfamethoxazole and chloramphenicol was found in MRSA. However, no significant difference was observed between MRSA and MSSA for resistance against gentamicin, erythromycin or linezolid. All cefoxitin-resistant S. aureus, nonetheless, were positive for the mecA gene. femA was found in all the MRSA isolates. Among other virulence markers, bbp and fnbB were found in all the isolates, while can (98.3%), clfA and fnbA (99.1%) were present predominately in MRSA. Thus, this study offers an understanding of antibiotic resistance MSCRAMMs, mecA, and femA gene patterns in locally isolated strains of S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Piodermia , Humanos , Staphylococcus aureus/genética , Clindamicina/farmacología , Linezolid/farmacología , Cefoxitina/farmacología , Rifampin/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Eritromicina/farmacología , Eritromicina/uso terapéutico , Ciprofloxacina/farmacología , Gentamicinas/farmacología , Cloranfenicol/farmacología , Piodermia/tratamiento farmacológico , Ceftarolina
5.
Z Naturforsch C J Biosci ; 78(3-4): 149-156, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35304839

RESUMEN

Four bioactive metabolites; ergosterol (1), peroxy ergosterol (2), α-cyclopiazonic acid (3) and kojic acid (4), were isolated from the fungal sp. Trichoderma viride MM21. Their structures were assigned by cumulative analysis of NMR and mass spectra, and comparison with literature. The antimicrobial activity of the fungus supernatant, mycelial cake, cumulative crude extract and compounds 1-4 was broadly studied against 11 diverse pathogens, revealing auspicious activity results. Based on the molecular docking, ergosterol (1) and peroxy ergosterol (2) were picked up to be computationally tested against topoisomerase IV of Staphylococcus aureus. The nominated enzyme is a possible target for the antibacterial activity of triterpenoidal/steroidal compounds. Compounds 1, 2 showed a deep inserting inside the enzyme groove recording a good binding affinity of -8.1 and -8.4 kcal/mol, respectively. Noteworthy that the antibacterial activity of ergosterol was higher (14-17 mm) than peroxy ergosterol (11-14 mm), although ergosterol formed only one hydrogen bond with the target, while peroxy ergosterol formed three hydrogen bonds. Such higher antibacterial activity of ergosterol may be attributed to its interference with other proteins included in this inhibition. The cytotoxic activity was tested against brine shrimp, revealing 100% mortality for the supernatant, crude extract and whole isolated compounds. Such strong cytotoxicity is attributed most likely to the abundant productivity/concentration of α-cyclopiazonic acid and kojic acid.


Asunto(s)
Antibacterianos , Hypocreales , Simulación del Acoplamiento Molecular , Antibacterianos/química , Ergosterol/farmacología , Estructura Molecular
6.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36992255

RESUMEN

Chemokine receptor type 4 (CXCR4) is a G protein-coupled receptor that plays an essential role in immune system function and disease processes. Our study aims to conduct a comparative structural and phylogenetic analysis of the CXCR4 protein to gain insights into its role in emerging and re-emerging diseases that impact the health of mammals. In this study, we analyzed the evolution of CXCR4 genes across a wide range of mammalian species. The phylogenetic study showed species-specific evolutionary patterns. Our analysis revealed novel insights into the evolutionary history of CXCR4, including genetic changes that may have led to functional differences in the protein. This study revealed that the structural homologous human proteins and mammalian CXCR4 shared many characteristics. We also examined the three-dimensional structure of CXCR4 and its interactions with other molecules in the cell. Our findings provide new insights into the genomic landscape of CXCR4 in the context of emerging and re-emerging diseases, which could inform the development of more effective treatments or prevention strategies. Overall, our study sheds light on the vital role of CXCR4 in mammalian health and disease, highlighting its potential as a therapeutic target for various diseases impacting human and animal health. These findings provided insight into the study of human immunological disorders by indicating that Chemokines may have activities identical to or similar to those in humans and several mammalian species.

7.
Microsc Res Tech ; 85(5): 1685-1693, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34919295

RESUMEN

It is likely that superficial corneal epithelial cells (SCECs) of the dromedary camels have a significant role in their survival at arid and semiarid regions. To the best of our knowledge, SCECs of camels' eyes have not been characterized previously using scanning electron microscopy (SEM), combined with morphometric analysis. Therefore, in the current study, we aim to describe the shape, topographical distribution, and density of SCECs associated with morphometric analysis using SEM. Twelve healthy adult camels' corneas were obtained immediately after slaughter. Each cornea has been divided into nine parts: central (C), middle dorsal (MD), middle ventral (MV), middle nasal (MN), middle temporal (MT), peripheral dorsal (PD), peripheral ventral (PV), peripheral nasal (PN), and peripheral temporal (PT). SCECs were distinguished and characterized into light, medium, and dark mosaics. The polygonal cells have been externally covered with microplicae that were more numerous above the light cells. The topographic distribution of light, medium, and dark cells revealed a well-defined concentration of light cells in excess of other cells in all parts as follows: PV (92.5%), PN (78.5%), MN (78%), MT (74.7%), PD (73.8%), PT (70.7%), MV (68.7%), MD (66.3%), and C (19.3%). The PV part recorded the highest density of light cells, while the C portion showed the lowest density for the same cells. We concluded that the light cells extensively predominate in all parts of the camels' cornea except the C part, indicating an adaptive modification to the harsh environment. Additionally, the PV and PN parts represent the permanent and endogenous source as well as a proliferative reserve for SCECs in dromedary camel.


Asunto(s)
Camelus , Nariz , Animales , Células Epiteliales , Ojo , Microscopía Electrónica de Rastreo
8.
Life (Basel) ; 12(12)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36556490

RESUMEN

Diabetes is a leading non-communicable disease and a risk factor for relapsing infections. The current study was aimed at investigating the prevalence and antibiotic susceptibility of carbapenem-resistant (CR) uropathogens of the family Enterobacteriaceae in diabetic patients. The data of 910 bacterial isolates was collected from diagnostic laboratories during January 2018 to December 2018. The bacterial isolates were identified using traditional methods including colonial characteristics, biochemical tests, and API (20E). Antimicrobial susceptibility and phenotypic characterization of ESBL, MBLs, and KPC was determined by utilizing CLSI recommended methods. The phenotypically positive isolates were further analyzed for resistance-encoding genes by manual PCR and Check-MDR CT103XL microarray. Susceptibility to colistin and cefiderocol was tested in accordance with CLSI guidelines. The data revealed that most of the patients were suffering from type 2 diabetes for a duration of more than a year and with uncontrolled blood sugar levels. Escherichia coli and Klebsiella pneumoniae were the most frequently encountered pathogens, followed by Enterobacter cloacae and Proteus mirabilis. More than 50% of the isolates showed resistance to 22 antibiotics, with the highest resistance (>80%) against tetracycline, ampicillin, and cefazolin. The uropathogens showed less resistance to non-ß-lactam antibiotics, including amikacin, fosfomycin, and nitrofurantoin. In the phenotypic assays, 495 (54.3%) isolates were found to be ESBL producers, while ESBL-TEM and -PER were the most prevalent ESBL types. The resistance to carbapenems was slightly less (250; 27.5%) than ESBL producers, yet more common amongst E. coli isolates. MBL production was a common feature in carbapenem-resistant isolates (71.2%); genotypic characterization also validated this trend. The isolates were found to be sensitive against the new drugs, cefiderocol and eravacycline. with 7−28% resistance, except for P. mirabilis which had 100% resistance against eravacycline. This study concludes that a few types of ESBL and carbapenemases are common in the uropathogens isolated from the diabetic patients, and antibiotic stewardship programs need to be revisited, particularly to cure UTIs in diabetic patients.

9.
Saudi J Biol Sci ; 29(6): 103277, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35401021

RESUMEN

The primary goal of this study was to conduct a preliminary assessment of maggot meal protein supplements in broiler production. Maggot meal comprises 55 percent crude protein (CP), 27.65% ether extract, 8.33% Ash, 3.37 crude fiber (CF), 2.14 NFE, 94.7 percent Dry Matter, 5702 kcal/kg gross energy, and 3955 kcal/kg metabolizing energy, according to proximate analysis. Maggot meal supplementation affected broiler meat feed intake, body weight gain, FCR, dressing %, mortality, antibody titer against ND, and organoleptic features. The cost-effectiveness of maggot supplementation was also evaluated. Birds were put into four experimental groups after a week of adaptation:Control group (M0), the first experimental group (M1), the second experimental group (M2), and the third experimental group (M3), which received supplements of 0, 2, 3, and 4 g/kg, respectively. A plane ratio was given to the control group as well. The overall feed intake findings were inversely proportional to the supplementation rate. Thus, the highly supplemented group (M3) showed the lowest feed intake than the control group (M0). Bodyweight gain was directly proportional to the supplementation rate, as evident by a considerable increase in the highly supplemented group (M3) compared to the control group.

10.
Antioxidants (Basel) ; 11(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35739953

RESUMEN

The potential radical scavenging, antioxidant activities (DPPH and ABTS) and bioactive constituents of several plant aqueous extracts (Curcuma longa, CL; Myristica fragrans, MF; Zingiber officinale, ZO; Cymbopogon citratus, CC and Thymus vulgaris, TV as well as their mixture) were investigated. The effect of these extracts on quality aspects (sensory characteristic, color traits, and Thiobarbituric acid) of rabbit meat during a 16-day cold (4 ± 2 °C) storage were investigated. Total phenolics and flavonoid contents of all extracts ranged from 13.27 ± 0.57 to 25.23 ± 0.49 mg GAE/g and 6.57 ± 0.22 to 13.24 ± 0.19 mg quercetin/g, respectively. The aqueous extract of MF had the highest (p ≤ 0.05) ABTS scavenging activity (4.55 µ mol Te/g dry extract), whereas the highest (p < 0.05) DPPH scavenging activity was detected in ZO extract (9.32 µ mol Te/g dry extract). Identification of extracts' bioactive compounds by GC-MS revealed that Eugenol (34.51%), Cinnamaldehyde (44.71%), Carvacrol (40.49%), Eicosane aldehyde (31.73%), and thymol (50.04%) are the first abundant bioactive compounds of CL, MF, ZO, CC, and TV aqueous extracts, respectively. Generally, the thiobarbituric acid reactive substances (TBARS) of all cold stored rabbit meat increased (p < 0.05) by increasing the storage time. The lowest TBARS values were detected for the samples treated with 0.2% of plant extracts mixture, which increased the shelf life of cold-stored rabbits by 50%. Significant (p < 0.05) increases in both L* and b* were observed with extended storage time. Meanwhile, the redness of the cold stored rabbit meat had an opposite trend. Treating the cold stored rabbit meat with 0.2% of the extract's mixture doubled the storage time with acceptable odor and taste. The results indicated that the studied plant extracts may be effective against rancidity and may be used as a natural antioxidant to prolong the shelf life of cold-stored rabbit meat.

11.
Antibiotics (Basel) ; 11(3)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35326843

RESUMEN

Backyard birds are small flocks that are more common in developing countries. They are used for poultry meat and egg production. However, they are also implicated in the maintenance and transmission of several zoonotic diseases, including multidrug-resistant bacteria. Enterococci are one of the most common zoonotic bacteria. They colonize numerous body sites and cause a wide range of serious nosocomial infections in humans. Therefore, the objective of the present study was to investigate the diversity in Enterococcus spp. in healthy birds and to determine the occurrence of multidrug resistance (MDR), multi-locus sequence types, and virulence genes and biofilm formation. From March 2019 to December 2020, cloacal swabs were collected from 15 healthy backyard broiler flocks. A total of 90 enterococci strains were recovered and classified according to the 16S rRNA sequence into Enterococcus faecalis (50%); Enterococcus faecium (33.33%), Enterococcus hirae (13.33%), and Enterococcus avium (3.33%). The isolates exhibited high resistance to tetracycline (55.6%), erythromycin (31.1%), and ampicillin (30%). However, all of the isolates were susceptible to linezolid. Multidrug resistance (MDR) was identified in 30 (33.3%) isolates. The enterococci AMR-associated genes ermB, ermA, tetM, tetL, vanA, cat, and pbp5 were identified in 24 (26.6%), 11 (12.2%), 39 (43.3%), 34 (37.7%), 1 (1.1%), 4 (4.4%), and 23 (25.5%) isolates, respectively. Of the 90 enterococci, 21 (23.3%), 27 (30%), and 36 (40%) isolates showed the presence of cylA, gelE, and agg virulence-associated genes, respectively. Seventy-three (81.1%) isolates exhibited biofilm formation. A statistically significant correlation was obtained for biofilm formation versus the MAR index and MDR. Multi-locus sequence typing (MLST) identified eleven and eight different STs for E. faecalis and E. faecium, respectively. Seven different rep-family plasmid genes (rep1-2, rep3, rep5-6, rep9, and rep11) were detected in the MDR enterococci. Two-thirds (20/30; 66.6%) of the enterococci were positive for one or two rep-families. In conclusion, the results show that healthy backyard chickens could act as a reservoir for MDR and virulent Enterococcus spp. Thus, an effective antimicrobial stewardship program and further studies using a One Health approach are required to investigate the role of backyard chickens as vectors for AMR transmission to humans.

12.
Polymers (Basel) ; 14(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36235997

RESUMEN

The performance of photovoltaics with superstrate configuration is limited by the rigidity and low refractivity of a classical glass cover. In this work, two polyimides (PIs) and two copolyimides combined in the main chain cycloaliphatic moieties, aromatic sequences, chalcogen atoms, and having/lacking fluorine atoms, are proposed as shielding covers for solar cells. The samples containing small cycloaliphatic moieties displayed high transmittance above 80% at 550 nm. The refractive index values under changeable wavelengths and temperatures were shown to influence the magnitude of the reflection losses. At the sample interface with the transparent electrode, optical losses were reduced (~0.26%) in comparison to the classical glass (~0.97%). The samples with the best optical features were further subjected to a surface treatment to render the self-cleaning ability. For this, a new approach was used residing in irradiation with the diffuse coplanar surface barrier discharge (DCSBD), followed by spraying with a commercial substance. Scanning electron microscopy and atomic force microscopy scans show that the surface characteristics were changed after surface treatment, as indicated by the variations in root mean square roughness, surface area ratio, and surface bearing index values. The proposed PI covers diminish the optical losses caused by total internal reflection and soiling, owing to their adapted refractivity and superhydrophobic surfaces (contact angles > 150°), and open up new perspectives for modern photovoltaic technologies.

13.
Polymers (Basel) ; 14(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35683900

RESUMEN

Apricots are a fragile fruit that rots quickly after harvest. Therefore, they have a short shelf-life. The purpose of this work is to determine the effect of coatings containing chitosan (CH) as well as its nanoparticles (CHNPs) as thin films on the quality and shelf-life of apricots stored at room (25 ± 3 °C) and cold (5 ± 1 °C) temperatures. The physical, chemical, and sensorial changes that occurred during storage were assessed, and the shelf-life was estimated. Transmission electron microscopy was used to examine the size and shape of the nanoparticle. The nanoparticles had a spherical shape with an average diameter of 16.4 nm. During the storage of the apricots, those treated with CHNPs showed an obvious decrease in weight loss, decay percent, total soluble solids, and lipid peroxidation, whereas total acidity, ascorbic acid, and carotenoid content were higher than those in the fruits treated with CH and the untreated fruits (control). The findings of the sensory evaluation revealed a significant difference in the overall acceptability scores between the samples treated with CHNPs and the other samples. Finally, it was found that CHNP coatings improved the qualitative features of the apricots and extended their shelf-life for up to 9 days at room temperature storage and for 30 days in cold storage.

14.
Plants (Basel) ; 11(11)2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35684286

RESUMEN

The importance of broccoli (Brassica oleracea var. italica) consumption has increased in recent years due to its significant amount of anticarcinogenic and antioxidant compounds, as well as its many vitamins. However, broccoli florets are a highly perishable product which rapidly senesce and turn yellow after harvest, resulting in losses in nutritional and bioactive compounds. Thus, in this study, we evaluated the effect of postharvest exogenous of salicylic acid (SA) and calcium chloride (CaCl2) and their combination on the quality of broccoli florets stored at 5 °C for 28 days to minimize the rapid senescence of broccoli florets. Samples treated with 2 mM SA alone or in combination with 2% CaCl2 showed lower weight loss and lower losses of chlorophyll content, vitamin C, phenolic compounds, carotenoids, flavonoids, and glucosinolates compared with the control samples. Additionally, antioxidant activity was maintained by either SA or SA + CaCl2 treatments while peroxidase activity was decreased. For higher quality and lower losses in antioxidant compounds of broccoli florets during refrigerated storage at 5 °C, SA + CaCl2 treatment could be helpful for up to 21 days.

15.
Saudi J Biol Sci ; 29(4): 2199-2209, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531227

RESUMEN

Bacterial wilt is one of the main diseases of Solanum spp., which caused by Ralstonia solanacearum (RS), formerly known as Pseudomonas solanacearum. Different concentrations of chitosan nanoparticles have been evaluated as one of the alternative methods of disease management in vitro and in vivo to reduce the risks of pesticide residues. Results in vitro experiment indicated that RS5 isolate was the most virulence one compared to RS1 and RS3. Increasing concentration of nano-chitosan, lead to increase inhibition zone, and this was observed at higher concentrations (100 and 200 µg/ml). In vivo results showed the highest concentration of spraying chitosan nanoparticles increase percentage reduction of disease incidence and severity, in effected potato and tomato plants. Recorded data of disease incidence and severity in treated potato plants were 78.93% and 71.85%, while on tomato plants were 81.64% and 77.63%, respectively compared to untreated infected potato plants were recorded 15.38%, 20.87%, and tomato plants were 20.98% and 28.64%. Results also revealed that 100 µg/ml of chitosan nanoparticles the lowest treatments used as soil amended curative treatments led to incease percentage reduction of disease incidence and severity, respectively on potato and tomato plants, but less than preventive treatment. The results registered that on potato plant were 54.93% and 52.65%, whilst recorded on tomato plants were 59.93% and 56.74%. Transmission electron microscopy (TEM) micrpgraphs illustrated that morphological of healthy R. solanacearum cells were undesirably stained with uranyl. The electron-dense uranyl acetate dye was limited to the cell surface slightly than the cytoplasm, which designated the integrity of the cell film of healthy cells. While bacterial cells treated with nano-chitosan, showed modification in the external shape, such as lysis of the cell wall and loss of cell flagella. Also, the result of using Random amplified polymorphic DNA (RAPD)-PCR observed that differences in treated Ralstonia solanancearum genotype by nano-chitosan compared to the genotype of the same untreated isolate.

16.
Vet Sci ; 9(5)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35622767

RESUMEN

Pseudomonas aeruginosa is a ubiquitous opportunistic bacterium that causes diseases in animals and humans. This study aimed to investigate the genetic diversity, antimicrobial resistance, biofilm formation, and virulence and antibiotic resistance genes of P. aeruginosa isolated from the uterus of cow, camel, and mare with clinical endometritis and their drinking water. Among the 180 uterine swabs and 90 drinking water samples analysed, 54 (20%) P. aeruginosa isolates were recovered. Isolates were identified biochemically to the genus level by the automated Vitek 2 system and genetically by the amplification of the gyrB gene and the sequencing of the 16S rRNA gene. Multilocus sequence typing identified ten different sequence types for the P. aeruginosa isolates. The identification of ST2012 was significantly (p ≤ 0.05) higher than that of ST296, ST308, ST111, and ST241. The isolates exhibited significantly (p ≤ 0.05) increased resistance to piperacillin (77.8%), ciprofloxacin (59.3%), gentamicin (50%), and ceftazidime (38.9%). Eight (14.8%) isolates showed resistance to imipenem; however, none of the isolates showed resistance to colistin. Multidrug resistance (MDR) was observed in 24 isolates (44.4%) with a multiple antibiotic resistance index ranging from 0.44 to 0.77. MDR was identified in 30 (33.3%) isolates. Furthermore, 38.8% and 9.2% of the isolates exhibited a positive extended-spectrum-ß-lactamase (ESBL) and metallo-ß-lactamase (MBL) phenotype, respectively. The most prevalent ß-lactamase encoding genes were blaTEM and blaCTX-M, however, the blaIPM gene was not detected in any of the isolates. Biofilm formation was observed in 49 (90.7%) isolates classified as: 11.1% weak biofilm producers; 38.9% moderate biofilm producers; 40.7% strong biofilm producers. A positive correlation was observed between the MAR index and biofilm formation. In conclusion, the results highlighted that farm animals with clinical endometritis could act as a reservoir for MDR and virulent P. aeruginosa. The emergence of ESBLs and MBLs producing P. aeruginosa in different farm animals is a public health concern. Therefore, surveillance programs to monitor and control MDR P. aeruginosa in animals are required.

17.
Oxid Med Cell Longev ; 2022: 2153996, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873797

RESUMEN

Reactive oxygen species (ROS) play an essential part in physiology of individual cell. ROS can cause damage to various biomolecules, including DNA. The systems that have developed to harness the impacts of ROS are antique evolutionary adaptations that are intricately linked to almost every aspect of cellular function. This research reveals the idea that during evolution, rather than being largely conserved, the molecular pathways reacting to oxidative stress have intrinsic flexibility. The coding sequences of the ATF2, ATF3, ATF4, and ATF6 genes were aligned to examine selection pressure on the genes, which were shown to be very highly conserved among vertebrate species. A total of 33 branches were explicitly evaluated for their capacity to diversify selection. After accounting for multiple testing, significance was determined using the likelihood ratio test with a threshold of p ≤ 0.05. Positive selection signs in these genes were detected across vertebrate lineages. In the selected test branches of our phylogeny, the synonymous rate variation revealed evidence (LRT, p value = 0.011 ≤ 0.05) of gene-wide episodic diversifying selection. As a result, there is evidence that diversifying selection occurred at least once on at least one test branch. These findings indicate that the activities of ROS-responsive systems are also theoretically flexible and may be altered by environmental selection pressure. By determining where the genes encoding these processes are "targeted" during evolution, we may better understand the mechanism of adaptation to oxidative stress during evolution.


Asunto(s)
Evolución Molecular , Selección Genética , Factores de Transcripción Activadores , Estrés Oxidativo/genética , Filogenia , Especies Reactivas de Oxígeno
18.
Saudi J Biol Sci ; 29(5): 3482-3493, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35844392

RESUMEN

Multispecies cropping systems contribute to sustainable agriculture with multiple ecosystem services. Effects of intercropping of various crops with faba beans on growth and yield parameters and disease severity of root rot, damping off and broomrape were investigated. This study was implemented in the laboratory, greenhouse and field to investigate the effect of the intercropping systems (fenugreek + faba bean, lupine + faba bean, garlic + faba bean and sole faba bean). The intercropping systems were combined with the application of arbuscular mycorrhiza fungi (AMF) and yeast as bio-control agents, compared to chemical application of herbicides (Glyphosate) and fungicides (Rizolex-T50), to control rot root diseases and broomrape weeds, Orobanche spp., of faba bean plants in vivo and under the naturally infested field. In vitro, yeast and Rizolex-T50 significantly inhibited mycelial growth of root pathogenic fungi. Intercropping with garlic and/or application of Rizolex-T, significantly decreased the incidence and disease index of root rot and damping-off diseases, meanwhile increased percentage of survival plants. In vivo, intercropping with fenugreek and/or application of Glyphosate, significantly reduced the number/weight of spikes/plot of broomrapes. Intercropping with fenugreek combined with AMF application promoted crop growth and significantly increased yield components. The AMF enhanced seed yield/ha when applied to the intercropping of faba bean + fenugreek and faba bean + garlic, showing the highest seed yield/ha with 3.722 and 3.568 ton/ha, respectively. Intercropping of faba bean with garlic integrated with AMF revealed the highest values of LER, 2.45, and net return, 2341 US$/ha. Our results suggested that using faba bean-garlic intercrop along with AMF inoculation can reduce root rot disease, damping off and broomrapes, as well as enhance the profitability of Egyptian farmer and sustainable production.

19.
Plants (Basel) ; 11(17)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36079693

RESUMEN

Calla lily (Zantedeschia albomaculata (Hook.) Baill.) is an herbaceous or semi-evergreen perennial grown from rhizomes. It is commonly named "Spotted Arum". Ribosomal RNAs (rRNAs) are found in all known organisms and are known for being functionally equivalent in all of them. A completely new in vitro culture protocol was applied to Z. albomaculata with two hormones, 6-Benzylaminopurine (BAP) and kinetin, to obtain full growth and multiplication. Due to their highly conserved sequences, the analysis of small-subunit rRNAs (16S-18S rRNAs) can provide precise statistical evaluation of a wide variety of phylogenetic connections. As a result, the plant's 18S rRNA gene allowed for identification and partial sequencing. Also, the traditional floral method and the novel application technique for identification were applied to Z. albomaculata. In this paper we systemically describe the structural strategies of the plant's adaptation to the surroundings at the morphological, physiological, and anatomical scale. Most the essential oils and fatty acids found in Z. albomaculata are omega fatty acids, octadecenoic acid, linoleic acid, and palmitic acid. All these fatty acids have industrial, medicinal, and pharmaceutical applications. The significant findings are the spadix sheathing leaves, and the precipitation of raphides calcium oxalate. The mitotic index showing the division activity was recorded, and it was 17.4%. The antimicrobial activity of Z. albomaculata ethanol extract was performed via the well diffusion method. This extract has shown high activity against Escherichia coli and Pseudomonas aeruginosa, compared to its lower activity against Bacillus cereus. By defining these characteristics and in vitro culture conditions, we will be able to acclimatize the plant in greenhouses, and then transfer it to the open field. The findings of this work identified the general characteristics of Zantedeschia albomaculata as an ornamental and medicinal plant in order to acclimatize this plant for cultivation in the Mediterranean climate.

20.
Microorganisms ; 10(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36363704

RESUMEN

Endophytic and rhizospheric bacteria isolated from halophytic plants support their host to survive in hyper-saline soil. These bacteria are also known to produce various enzymes with potential industrial applications. In this study, the endophytic and rhizospheric bacteria were isolated from Arthrocnemum macrostachyum collected from Karachi, Pakistan, and their ability to produce various extracellular enzymes was assessed using commercial and natural substrates. In total, 11 bacterial strains were isolated (four endophytic; seven rhizospheric). Bacillus was found to be the most abundant genus (73%), followed by Glutamicibacter (27%). The isolates including Glutamicibacter endophyticus and Bacillus licheniformis are reported for the first time from A. macrostachyum. All of the isolates were capable of producing at least two of the five industrially important hydrolytic enzymes tested, i.e., xylanase, cellulase, amylase, pectinase, and lipase. Lipase production was found to be highest among the isolates, i.e., up to 18 IU mL-1. Although most of the isolates could grow at a wide range of temperatures (4-55 °C), pH (1-11), and salt concentrations (2-12%), under extreme conditions, very little growth was observed and the optimal growth was recorded between 2% and 6% NaCl, 25 and 45 °C, and 7 and 9 pH. Our results suggest that these isolates could be potential producers of enzymes with several biotechnological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA