Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant J ; 105(6): 1459-1476, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33336445

RESUMEN

Perennial plants maintain their lifespan through several growth seasons. Arabis alpina serves as a model Brassicaceae species to study perennial traits. Lateral stems of A. alpina have a proximal vegetative zone with a dormant bud zone and a distal senescing seed-producing inflorescence zone. We addressed how this zonation is distinguished at the anatomical level, whether it is related to nutrient storage and which signals affect the zonation. We found that the vegetative zone exhibits secondary growth, which we termed the perennial growth zone (PZ). High-molecular-weight carbon compounds accumulate there in cambium and cambium derivatives. Neither vernalization nor flowering were requirements for secondary growth and the sequestration of storage compounds. The inflorescence zone with only primary growth, termed the annual growth zone (AZ), or roots exhibited different storage characteristics. Following cytokinin application cambium activity was enhanced and secondary phloem parenchyma was formed in the PZ and also in the AZ. In transcriptome analysis, cytokinin-related genes represented enriched gene ontology terms and were expressed at a higher level in the PZ than in the AZ. Thus, A. alpina primarily uses the vegetative PZ for nutrient storage, coupled to cytokinin-promoted secondary growth. This finding lays a foundation for future studies addressing signals for perennial growth.


Asunto(s)
Arabis/metabolismo , Citocininas/metabolismo , Tallos de la Planta/metabolismo , Arabis/crecimiento & desarrollo , Perfilación de la Expresión Génica , Metabolismo de los Lípidos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Almidón/metabolismo
2.
Plant Cell Physiol ; 62(4): 624-640, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-33561287

RESUMEN

Iron (Fe) toxicity is a major challenge for plant cultivation in acidic waterlogged soil environments, where lowland rice is a major staple food crop. Only few studies have addressed the molecular characterization of excess Fe tolerance in rice, and these highlight different mechanisms for Fe tolerance. Out of 16 lowland rice varieties, we identified a pair of contrasting lines, Fe-tolerant Lachit and -susceptible Hacha. The two lines differed in their physiological and morphological responses to excess Fe, including leaf growth, leaf rolling, reactive oxygen species generation and Fe and metal contents. These responses were likely due to genetic origin as they were mirrored by differential gene expression patterns, obtained through RNA sequencing, and corresponding gene ontology term enrichment in tolerant vs. susceptible lines. Thirty-five genes of the metal homeostasis category, mainly root expressed, showed differential transcriptomic profiles suggestive of an induced tolerance mechanism. Twenty-two out of these 35 metal homeostasis genes were present in selection sweep genomic regions, in breeding signatures, and/or differentiated during rice domestication. These findings suggest that Fe excess tolerance is an important trait in the domestication of lowland rice, and the identified genes may further serve to design the targeted Fe tolerance breeding of rice crops.


Asunto(s)
Adaptación Biológica/genética , Hierro/toxicidad , Oryza/genética , Proteínas de Plantas/genética , Adaptación Biológica/efectos de los fármacos , Productos Agrícolas/genética , Domesticación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/genética , India , Hierro/metabolismo , Oryza/efectos de los fármacos , Oryza/fisiología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
3.
BMC Plant Biol ; 16(1): 211, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27716045

RESUMEN

BACKGROUND: FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is the central regulator of iron uptake in Arabidopsis thaliana roots. We performed transcriptome analyses of six day-old seedlings and roots of six week-old plants using wild type, a fit knock-out mutant and a FIT over-expression line grown under iron-sufficient or iron-deficient conditions. We compared genes regulated in a FIT-dependent manner depending on the developmental stage of the plants. We assembled a high likelihood dataset which we used to perform co-expression and functional analysis of the most stably iron deficiency-induced genes. RESULTS: 448 genes were found FIT-regulated. Out of these, 34 genes were robustly FIT-regulated in root and seedling samples and included 13 novel FIT-dependent genes. Three hundred thirty-one genes showed differential regulation in response to the presence and absence of FIT only in the root samples, while this was the case for 83 genes in the seedling samples. We assembled a virtual dataset of iron-regulated genes based on a total of 14 transcriptomic analyses of iron-deficient and iron-sufficient wild-type plants to pinpoint the best marker genes for iron deficiency and analyzed this dataset in depth. Co-expression analysis of this dataset revealed 13 distinct regulons part of which predominantly contained functionally related genes. CONCLUSIONS: We could enlarge the list of FIT-dependent genes and discriminate between genes that are robustly FIT-regulated in roots and seedlings or only in one of those. FIT-regulated genes were mostly induced, few of them were repressed by FIT. With the analysis of a virtual dataset we could filter out and pinpoint new candidates among the most reliable marker genes for iron deficiency. Moreover, co-expression and functional analysis of this virtual dataset revealed iron deficiency-induced and functionally distinct regulons.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Redes Reguladoras de Genes , Marcadores Genéticos , Homeostasis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
4.
Proteomics ; 15(17): 3030-47, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25951126

RESUMEN

Iron is an essential micronutrient for plants, and iron deficiency requires a variety of physiological adaptations. FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is essential for the regulation of iron uptake in Arabidopsis thaliana roots. FIT is transcriptionally as well as posttranscriptionally regulated in response to iron supply. To investigate to which extent posttranscriptional regulation upon iron deficiency applies to proteins and to determine the dependency on FIT, we performed a parallel proteomic and transcriptomic study with wild-type, a fit knock-out mutant, and a FIT overexpressing Arabidopsis line. Among 92 proteins differentially regulated by iron and/or FIT, we identified 30 proteins, which displayed differential regulation at the transcriptional level. Eleven protein spots were regulated in at least one of the data points even contrary to the respective genes dependent on FIT. We found ten proteins in at least two forms. The analysis of functional classification showed enriched GO terms among the posttranscriptionally regulated genes and of proteins, that were downregulated or absent in the fit knock-out mutant. Taken together, we provide evidence for iron and FIT-dependent posttranscriptional regulation in iron homeostasis in A. thaliana.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hierro/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteómica/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Front Plant Sci ; 14: 1204723, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554559

RESUMEN

Cellular homeostasis of the micronutrient iron is highly regulated in plants and responsive to nutrition, stress, and developmental signals. Genes for iron management encode metal and other transporters, enzymes synthesizing chelators and reducing substances, transcription factors, and several types of regulators. In transcriptome or proteome datasets, such iron homeostasis-related genes are frequently found to be differentially regulated. A common method to detect whether a specific cellular pathway is affected in the transcriptome data set is to perform Gene Ontology (GO) enrichment analysis. Hence, the GO database is a widely used resource for annotating genes and identifying enriched biological pathways in Arabidopsis thaliana. However, iron homeostasis-related GO terms do not consistently reflect gene associations and levels of evidence in iron homeostasis. Some genes in the existing iron homeostasis GO terms lack direct evidence of involvement in iron homeostasis. In other aspects, the existing GO terms for iron homeostasis are incomplete and do not reflect the known biological functions associated with iron homeostasis. This can lead to potential errors in the automatic annotation and interpretation of GO term enrichment analyses. We suggest that applicable evidence codes be used to add missing genes and their respective ortholog/paralog groups to make the iron homeostasis-related GO terms more complete and reliable. There is a high likelihood of finding new iron homeostasis-relevant members in gene groups and families like the ZIP, ZIF, ZIFL, MTP, OPT, MATE, ABCG, PDR, HMA, and HMP. Hence, we compiled comprehensive lists of genes involved in iron homeostasis that can be used for custom enrichment analysis in transcriptomic or proteomic studies, including genes with direct experimental evidence, those regulated by central transcription factors, and missing members of small gene families or ortholog/paralog groups. As we provide gene annotation and literature alongside, the gene lists can serve multiple computational approaches. In summary, these gene lists provide a valuable resource for researchers studying iron homeostasis in A. thaliana, while they also emphasize the importance of improving the accuracy and comprehensiveness of the Gene Ontology.

6.
Plant Direct ; 5(1): e00302, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33506166

RESUMEN

The perennial life style is a successful ecological strategy, and Arabis alpina is a recently developed model Brassicaceae species for studying it. One aspect, poorly investigated until today, concerns the differing patterns of allocation, storage, and metabolism of nutrients between perennials and annuals and the yet unknown signals that regulate this process. A. alpina has a complex lateral stem architecture with a proximal vegetative perennial (PZ) and a distal annual flowering zone (AZ) inside the same stems. Lipid bodies (LBs) with triacylglycerols (TAGs) accumulate in the PZ. To identify potential processes of lipid metabolism linked with the perennial lifestyle, we analyzed lipid species in the PZ versus AZ. Glycerolipid fractions, including neutral lipids with mainly TAGs, phospholipids, and glycolipids, were present at higher levels in the PZ as compared to AZ or roots. Concomitantly, contents of specific long-chain and very long-chain fatty acids increased during formation of the PZ. Corresponding gene expression data, gene ontology term enrichment, and correlation analysis with lipid species pinpoint glycerolipid-related genes to be active during the development of the PZ. Possibilities that lipid metabolism genes may be targets of regulatory mechanisms specifying PZ differentiation in A. alpina are discussed.

7.
Dev Cell ; 48(5): 726-740.e10, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30713077

RESUMEN

Nutrient acquisition is entangled with growth and stress in sessile organisms. The bHLH transcription factor FIT is a key regulator of Arabidopsis iron (Fe) acquisition and post-translationally activated upon low Fe. We identified CBL-INTERACTING PROTEIN KINASE CIPK11 as a FIT interactor. Cytosolic Ca2+ concentration and CIPK11 expression are induced by Fe deficiency. cipk11 mutant plants display compromised root Fe mobilization and seed Fe content. Fe uptake is dependent on CBL1/CBL9. CIPK11 phosphorylates FIT at Ser272, and mutation of this target site modulates FIT nuclear accumulation, homo-dimerization, interaction with bHLH039, and transcriptional activity and affects the plant's Fe-uptake ability. We propose that Ca2+-triggered CBL1/9-mediated activation of CIPK11 and subsequent phosphorylation of FIT shifts inactive into active FIT, allowing regulatory protein interactions in the nucleus. This biochemical link between Fe deficiency and the cellular Ca2+ decoding machinery represents an environment-sensing mechanism to adjust nutrient uptake.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Señalización del Calcio/fisiología , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Núcleo Celular/metabolismo , Fosforilación , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo
8.
Front Plant Sci ; 9: 1383, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30333841

RESUMEN

Iron (Fe) is an essential element for plant growth and development. The cultivation of leguminous plants has generated strong interest because of their growth even on poor soils. Calcareous and saline soils with poor mineral availability are wide-spread in Tunisia. In an attempt to select better forage crops adapted to Tunisian soils, we characterized Fe deficiency responses of three different isolates of Hedysarum carnosum, an endemic Tunisian extremophile species growing in native stands in salt and calcareous soil conditions. H. carnosum is a non-model crop. The three isolates, named according to their habitats Karkar, Thelja, and Douiret, differed in the expression of Fe deficiency symptoms like morphology, leaf chlorosis with compromised leaf chlorophyll content and photosynthetic capacity and leaf metal contents. Across these parameters Thelja was found to be tolerant, while Karkar and Douiret were susceptible to Fe deficiency stress. The three physiological and molecular indicators of the iron deficiency response in roots, Fe reductase activity, growth medium acidification and induction of the IRON-REGULATED TRANSPORTER1 homolog, indicated that all lines responded to -Fe, however, varied in the strength of the different responses. We conclude that the individual lines have distinct adaptation capacities to react to iron deficiency, presumably involving mechanisms of whole-plant iron homeostasis and internal metal distribution. The Fe deficiency tolerance of Thelja might be linked with adaptation to its natural habitat on calcareous soil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA