Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962997

RESUMEN

Lipid droplets (LDs) are organelles central to lipid and energy homeostasis across all eukaryotes. In the malaria-causing parasite Plasmodium falciparum the roles of LDs in lipid acquisition from its host cells and their metabolism are poorly understood, despite the high demand for lipids in parasite membrane synthesis. We systematically characterised LD size, composition and dynamics across the disease-causing blood infection. Applying split fluorescence emission analysis and 3D Focused Ion Beam-Scanning Electron Microscopy, we observed a decrease in LD size in late schizont stages. LD contraction likely signifies a switch from lipid accumulation to lipid utilisation in preparation for parasite egress from host red blood cells. We demonstrate connections between LDs and several parasite organelles, pointing to potential functional interactions. Chemical inhibition of triacylglyerol (TAG) synthesis or break-down revealed essential LD functions for schizogony and in counteracting lipid toxicity. The dynamics of lipid synthesis, storage and utilisation in P. falciparum LDs might provide a target for new anti-malarial intervention strategies.

3.
PLoS Pathog ; 19(7): e1011517, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37471441

RESUMEN

Apicomplexans are widespread parasites of humans and other animals, and include the causative agents of malaria (Plasmodium species) and toxoplasmosis (Toxoplasma gondii). Existing anti-apicomplexan therapies are beset with issues around drug resistance and toxicity, and new treatment options are needed. The mitochondrial electron transport chain (ETC) is one of the few processes that has been validated as a drug target in apicomplexans. To identify new inhibitors of the apicomplexan ETC, we developed a Seahorse XFe96 flux analyzer approach to screen the 400 compounds contained within the Medicines for Malaria Venture 'Pathogen Box' for ETC inhibition. We identified six chemically diverse, on-target inhibitors of the ETC in T. gondii, at least four of which also target the ETC of Plasmodium falciparum. Two of the identified compounds (MMV024937 and MMV688853) represent novel ETC inhibitor chemotypes. MMV688853 belongs to a compound class, the aminopyrazole carboxamides, that were shown previously to target a kinase with a key role in parasite invasion of host cells. Our data therefore reveal that MMV688853 has dual targets in apicomplexans. We further developed our approach to pinpoint the molecular targets of these inhibitors, demonstrating that all target Complex III of the ETC, with MMV688853 targeting the ubiquinone reduction (Qi) site of the complex. Most of the compounds we identified remain effective inhibitors of parasites that are resistant to Complex III inhibitors that are in clinical use or development, indicating that they could be used in treating drug resistant parasites. In sum, we have developed a versatile, scalable approach to screen for compounds that target the ETC in apicomplexan parasites, and used this to identify and characterize novel inhibitors.


Asunto(s)
Parásitos , Toxoplasma , Toxoplasmosis , Animales , Humanos , Transporte de Electrón , Complejo III de Transporte de Electrones , Toxoplasmosis/parasitología , Plasmodium falciparum
4.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34881783

RESUMEN

Male and female Plasmodium falciparum gametocytes are the parasite lifecycle stage responsible for transmission of malaria from the human host to the mosquito vector. Not only are gametocytes able to survive in radically different host environments, but they are also precursors for male and female gametes that reproduce sexually soon after ingestion by the mosquito. Here, we investigate the sex-specific lipid metabolism of gametocytes within their host red blood cell. Comparison of the male and female lipidome identifies cholesteryl esters and dihydrosphingomyelin enrichment in female gametocytes. Chemical inhibition of each of these lipid types in mature gametocytes suggests dihydrosphingomyelin synthesis but not cholesteryl ester synthesis is important for gametocyte viability. Genetic disruption of each of the two sphingomyelin synthase genes points towards sphingomyelin synthesis contributing to gametocytogenesis. This study shows that gametocytes are distinct from asexual stages, and that the lipid composition is also vastly different between male and female gametocytes, reflecting the different cellular roles these stages play. Taken together, our results highlight the sex-specific nature of gametocyte lipid metabolism, which has the potential to be targeted to block malaria transmission. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Animales , Femenino , Humanos , Estadios del Ciclo de Vida/fisiología , Metabolismo de los Lípidos , Masculino , Mosquitos Vectores , Plasmodium falciparum/metabolismo , Esfingomielinas/metabolismo
5.
BMC Biol ; 21(1): 65, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013531

RESUMEN

BACKGROUND: The protozoan malaria parasite Plasmodium falciparum has a complex life cycle during which it needs to differentiate into multiple morphologically distinct life forms. A key process for transmission of the disease is the development of male and female gametocytes in the human blood, yet the mechanisms determining sexual dimorphism in these haploid, genetically identical sexual precursor cells remain largely unknown. To understand the epigenetic program underlying the differentiation of male and female gametocytes, we separated the two sexual forms by flow cytometry and performed RNAseq as well as comprehensive ChIPseq profiling of several histone variants and modifications. RESULTS: We show that in female gametocytes the chromatin landscape is globally remodelled with respect to genome-wide patterns and combinatorial usage of histone variants and histone modifications. We identified sex specific differences in heterochromatin distribution, implicating exported proteins and ncRNAs in sex determination. Specifically in female gametocytes, the histone variants H2A.Z/H2B.Z were highly enriched in H3K9me3-associated heterochromatin. H3K27ac occupancy correlated with stage-specific gene expression, but in contrast to asexual parasites this was unlinked to H3K4me3 co-occupancy at promoters in female gametocytes. CONCLUSIONS: Collectively, we defined novel combinatorial chromatin states differentially organising the genome in gametocytes and asexual parasites and unravelled fundamental, sex-specific differences in the epigenetic code. Our chromatin maps represent an important resource for future understanding of the mechanisms driving sexual differentiation in P. falciparum.


Asunto(s)
Malaria Falciparum , Parásitos , Animales , Masculino , Femenino , Humanos , Plasmodium falciparum , Histonas/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Ensamble y Desensamble de Cromatina , Diferenciación Sexual/genética , Malaria Falciparum/parasitología , Cromatina/genética , Cromatina/metabolismo , Parásitos/genética , Parásitos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
6.
PLoS Pathog ; 17(2): e1009259, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600495

RESUMEN

The human malaria parasite Plasmodium falciparum relies on lipids to survive; this makes its lipid metabolism an attractive drug target. The lipid phosphatidylserine (PS) is usually confined to the inner leaflet of the red blood cell membrane (RBC) bilayer; however, some studies suggest that infection with the intracellular parasite results in the presence of this lipid in the RBC membrane outer leaflet, where it could act as a recognition signal to phagocytes. Here, we used fluorescent lipid analogues and probes to investigate the enzymatic reactions responsible for maintaining asymmetry between membrane leaflets, and found that in parasitised RBCs the maintenance of membrane asymmetry was partly disrupted, and PS was increased in the outer leaflet. We examined the underlying causes for the differences between uninfected and infected RBCs using fluorescent dyes and probes, and found that calcium levels increased in the infected RBC cytoplasm, whereas membrane cholesterol was depleted from the erythrocyte plasma membrane. We explored the resulting effect of PS exposure on enhanced phagocytosis by monocytes, and show that infected RBCs must expend energy to limit phagocyte recognition, and provide experimental evidence that PS exposure contributes to phagocytic recognition of P. falciparum-infected RBCs. Together, these findings underscore the pivotal role for PS exposure on the surface of Plasmodium falciparum-infected erythrocytes for in vivo interactions with the host immune system, and provide a rationale for targeted antimalarial drug design.


Asunto(s)
Calcio/metabolismo , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Malaria Falciparum/metabolismo , Monocitos/metabolismo , Fagocitosis , Fosfatidilserinas/metabolismo , Membrana Eritrocítica/parasitología , Eritrocitos/parasitología , Humanos , Malaria Falciparum/parasitología , Monocitos/parasitología , Plasmodium falciparum/aislamiento & purificación
7.
Cell ; 134(1): 48-61, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18614010

RESUMEN

A major part of virulence for Plasmodium falciparum malaria infection, the most lethal parasitic disease of humans, results from increased rigidity and adhesiveness of infected host red cells. These changes are caused by parasite proteins exported to the erythrocyte using novel trafficking machinery assembled in the host cell. To understand these unique modifications, we used a large-scale gene knockout strategy combined with functional screens to identify proteins exported into parasite-infected erythrocytes and involved in remodeling these cells. Eight genes were identified encoding proteins required for export of the parasite adhesin PfEMP1 and assembly of knobs that function as physical platforms to anchor the adhesin. Additionally, we show that multiple proteins play a role in generating increased rigidity of infected erythrocytes. Collectively these proteins function as a pathogen secretion system, similar to bacteria and may provide targets for antivirulence based therapies to a disease responsible for millions of deaths annually.


Asunto(s)
Eritrocitos/citología , Eritrocitos/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/metabolismo , Animales , Adhesión Celular , Forma de la Célula , Membrana Eritrocítica/química , Humanos , Plasmodium falciparum/metabolismo , Transporte de Proteínas , Proteínas Protozoarias/análisis , Proteínas Protozoarias/genética , Virulencia
8.
Cell Microbiol ; 23(1): e13266, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32975363

RESUMEN

Malaria parasites are fast replicating unicellular organisms and require substantial amounts of folate for DNA synthesis. Despite the central role of this critical co-factor for parasite survival, only little is known about intraparasitic folate trafficking in Plasmodium. Here, we report on the expression, subcellular localisation and function of the parasite's folate transporter 2 (FT2) during life cycle progression in the murine malaria parasite Plasmodium berghei. Using live fluorescence microscopy of genetically engineered parasites, we demonstrate that FT2 localises to the apicoplast. In invasive P. berghei stages, a fraction of FT2 is also observed at the apical end. Upon genetic disruption of FT2, blood and liver infection, gametocyte production and mosquito colonisation remain unaltered. But in the Anopheles vector, FT2-deficient parasites develop inflated oocysts with unusual pulp formation consisting of numerous single-membrane vesicles, which ultimately fuse to form large cavities. Ultrastructural analysis suggests that this defect reflects aberrant sporoblast formation caused by abnormal vesicular traffic. Complete sporogony in FT2-deficient oocysts is very rare, and mutant sporozoites fail to establish hepatocyte infection, resulting in a complete block of parasite transmission. Our findings reveal a previously unrecognised organellar folate transporter that exerts critical roles for pathogen maturation in the arthropod vector.


Asunto(s)
Apicoplastos/metabolismo , Transportadores de Ácido Fólico/genética , Transportadores de Ácido Fólico/metabolismo , Ácido Fólico/metabolismo , Malaria/parasitología , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Animales , Anopheles/parasitología , Hepatocitos/parasitología , Estadios del Ciclo de Vida , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Mosquitos Vectores , Oocistos/citología , Oocistos/genética , Oocistos/metabolismo , Organismos Modificados Genéticamente , Plasmodium berghei/citología , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo
9.
Cell Mol Life Sci ; 78(10): 4545-4561, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33713154

RESUMEN

Malaria is a vector-borne parasitic disease with a vast impact on human history, and according to the World Health Organisation, Plasmodium parasites still infect over 200 million people per year. Plasmodium falciparum, the deadliest parasite species, has a remarkable ability to undermine the host immune system and cause life-threatening disease during blood infection. The parasite's host cells, red blood cells (RBCs), generally maintain an asymmetric distribution of phospholipids in the two leaflets of the plasma membrane bilayer. Alterations to this asymmetry, particularly the exposure of phosphatidylserine (PS) in the outer leaflet, can be recognised by phagocytes. Because of the importance of innate immune defence numerous studies have investigated PS exposure in RBCs infected with P. falciparum, but have reached different conclusions. Here we review recent advancements in our understanding of the molecular mechanisms which regulate asymmetry in RBCs, and whether infection with the P. falciparum parasite results in changes to PS exposure. On the balance of evidence, it is likely that membrane asymmetry is disrupted in parasitised RBCs, though some methodological issues need addressing. We discuss the potential causes and consequences of altered asymmetry in parasitised RBCs, particularly for in vivo interactions with the immune system, and the role of host-parasite co-evolution. We also examine the potential asymmetric state of parasite membranes and summarise current knowledge on the parasite proteins, which could regulate asymmetry in these membranes. Finally, we highlight unresolved questions at this time and the need for interdisciplinary approaches to uncover the machinery which enables P. falciparum parasites to hide in mature erythrocytes.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/parasitología , Eritrocitos/metabolismo , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Fosfolípidos/metabolismo , Plasmodium falciparum/patogenicidad , Animales , Eritrocitos/parasitología , Interacciones Huésped-Parásitos/fisiología , Humanos , Sistema Inmunológico/metabolismo , Sistema Inmunológico/parasitología
10.
Adv Exp Med Biol ; 1340: 97-123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34569022

RESUMEN

Plasmodium falciparum has dedicated an unusually large proportion of its genome to molecular chaperones (2% of all genes), with the heat shock protein 40 (Hsp40) family (now called J domain proteins, JDPs) exhibiting evolutionary radiation into 49 members. A large number of the P. falciparum JDPs (PfJDPs) are predicted to be exported, with certain members shown experimentally to be present in the erythrocyte cytosol (PFA0660w and PFE0055c) or erythrocyte membrane (ring-infected erythrocyte surface antigen, RESA). PFA0660w and PFE0055c are associated with an exported plasmodial Hsp70 (PfHsp70-x) within novel mobile structures called J-dots, which have been proposed to be dedicated to the trafficking of key membrane proteins such as erythrocyte membrane protein 1 (PfEMP1). Well over half of the PfJDPs appear to be essential, including the J-dot PfJDP, PFE0055c, while others have been found to be required for growth under febrile conditions (e.g. PFA0110w, the ring-infected erythrocyte surface antigen protein [RESA]) or involved in pathogenesis (e.g. PF10_0381 has been shown to be important for protrusions of the infected red blood cell membrane, the so-called knobs). Here we review what is known about those PfJDPs that have been well characterised, and may be directly or indirectly involved in the survival and pathogenesis of the malaria parasite.


Asunto(s)
Proteínas del Choque Térmico HSP40 , Plasmodium falciparum , Eritrocitos , Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
11.
PLoS Pathog ; 14(4): e1006918, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29614109

RESUMEN

The malaria-causing blood stage of Plasmodium falciparum requires extracellular pantothenate for proliferation. The parasite converts pantothenate into coenzyme A (CoA) via five enzymes, the first being a pantothenate kinase (PfPanK). Multiple antiplasmodial pantothenate analogues, including pantothenol and CJ-15,801, kill the parasite by targeting CoA biosynthesis/utilisation. Their mechanism of action, however, remains unknown. Here, we show that parasites pressured with pantothenol or CJ-15,801 become resistant to these analogues. Whole-genome sequencing revealed mutations in one of two putative PanK genes (Pfpank1) in each resistant line. These mutations significantly alter PfPanK activity, with two conferring a fitness cost, consistent with Pfpank1 coding for a functional PanK that is essential for normal growth. The mutants exhibit a different sensitivity profile to recently-described, potent, antiplasmodial pantothenate analogues, with one line being hypersensitive. We provide evidence consistent with different pantothenate analogue classes having different mechanisms of action: some inhibit CoA biosynthesis while others inhibit CoA-utilising enzymes.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Malaria/tratamiento farmacológico , Mutación , Ácido Pantoténico/análogos & derivados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plasmodium falciparum/efectos de los fármacos , Animales , Coenzima A/biosíntesis , Eritrocitos/parasitología , Malaria/parasitología , Ácido Pantoténico/farmacología , Pruebas de Sensibilidad Parasitaria , Fosforilación , Proteínas Protozoarias/genética
12.
Environ Microbiol ; 19(5): 1975-1986, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28251756

RESUMEN

Parastagonospora nodorum is an important pathogen of wheat. The contribution of secondary metabolites to this pathosystem is poorly understood. A biosynthetic gene cluster (SNOG_08608-08616) has been shown to be upregulated during the late stage of P. nodorum wheat leaf infection. The gene cluster shares several homologues with the Cercospora nicotianae CTB gene cluster encoding the biosynthesis of cercosporin. Activation of the gene cluster by overexpression (OE) of the transcription factor gene (SNOG_08609) in P. nodorum resulted in the production of elsinochrome C, a perelyenequinone phytotoxin structurally similar to cercosporin. Heterologous expression of the polyketide synthase gene elcA from the gene cluster in Aspergillus nidulans resulted in the production of the polyketide precursor nortoralactone common to the cercosporin pathway. Elsinochrome C could be detected on wheat leaves infected with P. nodorum, but not in the elcA disruption mutant. The compound was shown to exhibit necrotic activity on wheat leaves in a light-dependent manner. Wheat seedling infection assays showed that ΔelcA exhibited reduced virulence compared with wild type, while infection by an OE strain overproducing elsinochrome C resulted in larger lesions on leaves. These data provided evidence that elsinochrome C contributes to the virulence of P. nodorum against wheat.


Asunto(s)
Ascomicetos/genética , Familia de Multigenes/genética , Perileno/análogos & derivados , Quinonas/metabolismo , Triticum/microbiología , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Activación Enzimática/genética , Genómica , Perileno/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Sintasas Poliquetidas/biosíntesis , Sintasas Poliquetidas/genética , Plantones/microbiología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Virulencia/genética
13.
Cell Mol Life Sci ; 73(21): 4141-58, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27193441

RESUMEN

Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.


Asunto(s)
Anticuerpos/inmunología , Antígenos de Protozoos/metabolismo , Eritrocitos/parasitología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Animales , Proteínas Portadoras/metabolismo , Eritrocitos/ultraestructura , Técnicas de Inactivación de Genes , Humanos , Proteínas de la Membrana/metabolismo , Parásitos/inmunología , Parásitos/ultraestructura , Fenotipo , Plasmodium falciparum/ultraestructura , Transporte de Proteínas , Proteínas Protozoarias/metabolismo
14.
Blood ; 124(23): 3459-68, 2014 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-25139348

RESUMEN

Following invasion of human red blood cells (RBCs) by the malaria parasite, Plasmodium falciparum, a remarkable process of remodeling occurs in the host cell mediated by trafficking of several hundred effector proteins to the RBC compartment. The exported virulence protein, P falciparum erythrocyte membrane protein 1 (PfEMP1), is responsible for cytoadherence of infected cells to host endothelial receptors. Maurer clefts are organelles essential for protein trafficking, sorting, and assembly of protein complexes. Here we demonstrate that disruption of PfEMP1 trafficking protein 1 (PfPTP1) function leads to severe alterations in the architecture of Maurer's clefts. Furthermore, 2 major surface antigen families, PfEMP1 and STEVOR, are no longer displayed on the host cell surface leading to ablation of cytoadherence to host receptors. PfPTP1 functions in a large complex of proteins and is required for linking of Maurer's clefts to the host actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Antígenos de Protozoos/metabolismo , Eritrocitos/parasitología , Malaria Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Factores de Virulencia/metabolismo , Actinas/metabolismo , Células Cultivadas , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/parasitología , Eritrocitos/metabolismo , Interacciones Huésped-Parásitos , Humanos , Malaria Falciparum/sangre , Plasmodium falciparum/patogenicidad , Transporte de Proteínas , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/parasitología
15.
Malar J ; 15: 73, 2016 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-26852399

RESUMEN

BACKGROUND: The development of differentiated sexual stages (gametocytes) within human red blood cells is essential for the propagation of the malaria parasite, since only mature gametocytes will survive in the mosquito's midgut. Hence gametocytogenesis is a pre-requisite for transmission of the disease. Physiological changes involved in sexual differentiation are still enigmatic. In particular the lipid metabolism-despite being central to cellular regulation and development-is not well explored. METHODS: Here the lipid profiles of red blood cells infected with the five different sexual stages of Plasmodium falciparum were analysed by mass spectrometry and compared to those from uninfected and asexual trophozoite infected erythrocytes. RESULTS: Fundamental differences between erythrocytes infected with the different parasite stages were revealed. In mature gametocytes many lipids that decrease in the trophozoite and early gametocyte infected red blood cells are regained. In particular, regulators of membrane fluidity, cholesterol and sphingomyelin, increased significantly during gametocyte maturation. Neutral lipids (serving mainly as caloriometric reserves) increased from 3 % of total lipids in uninfected to 27 % in stage V gametocyte infected red blood cells. The major membrane lipid class (phospholipids) decreased during gametocyte development. CONCLUSIONS: The lipid profiles of infected erythrocytes are characteristic for the particular parasite life cycle and maturity stages of gametocytes. The obtained lipid profiles are crucial in revealing the lipid metabolism of malaria parasites and identifying targets to interfere with this deadly disease.


Asunto(s)
Lípidos/análisis , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Animales , Eritrocitos/parasitología , Humanos , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo
16.
Mol Microbiol ; 91(4): 762-76, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24350823

RESUMEN

Intra-erythrocytic stages of the malaria parasite, Plasmodium falciparum, are thought to be dependent on de novo synthesis of phosphatidylinositol, as red blood cells (RBC) lack the capacity to synthesize this phospholipid. The myo-inositol headgroup of PI can either be synthesized de novo or scavenged from the RBC. An untargeted metabolite profiling of P. falciparum infected RBC showed that trophozoite and schizont stages accumulate high levels of myo-inositol-3-phosphate, indicating increased de novo biosynthesis of myo-inositol from glucose 6-phosphate. Metabolic labelling studies with (13) C-U-glucose in the presence and absence of exogenous inositol confirmed that de novo myo-inositol synthesis occurs in parallel with myo-inositol salvage pathways. Unexpectedly, while both endogenous and scavenged myo-inositol was used to synthesize bulk PI, only de novo-synthesized myo-inositol was incorporated into GPI glycolipids. Moreover, gene disruption studies suggested that the INO1 gene, encoding myo-inositol 3-phosphate synthase, is essential in asexual parasite stages. Together these findings suggest that P. falciparum asexual stages are critically dependent on de novo myo-inositol biosynthesis for assembly of a sub-pool of PI species and GPI biosynthesis. These findings highlight unexpected complexity in phospholipid biosynthesis in P. falciparum and a lack of redundancy in some nutrient salvage versus endogenous biosynthesis pathways.


Asunto(s)
Proteínas Ligadas a GPI/metabolismo , Glucolípidos/metabolismo , Inositol/biosíntesis , Plasmodium falciparum/fisiología , Eritrocitos/parasitología , Glucosa-6-Fosfato/metabolismo , Humanos , Marcaje Isotópico , Plasmodium falciparum/metabolismo
17.
Nature ; 459(7249): 945-9, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19536257

RESUMEN

Several hundred malaria parasite proteins are exported beyond an encasing vacuole and into the cytosol of the host erythrocyte, a process that is central to the virulence and viability of the causative Plasmodium species. The trafficking machinery responsible for this export is unknown. Here we identify in Plasmodium falciparum a translocon of exported proteins (PTEX), which is located in the vacuole membrane. The PTEX complex is ATP-powered, and comprises heat shock protein 101 (HSP101; a ClpA/B-like ATPase from the AAA+ superfamily, of a type commonly associated with protein translocons), a novel protein termed PTEX150 and a known parasite protein, exported protein 2 (EXP2). EXP2 is the potential channel, as it is the membrane-associated component of the core PTEX complex. Two other proteins, a new protein PTEX88 and thioredoxin 2 (TRX2), were also identified as PTEX components. As a common portal for numerous crucial processes, this translocon offers a new avenue for therapeutic intervention.


Asunto(s)
Malaria Falciparum/parasitología , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Biológicos , Unión Proteica , Transporte de Proteínas
18.
Trends Parasitol ; 40(7): 537-540, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38853078

RESUMEN

Careful observation of parasites, masters of camouflage, reveals an ingenious and fascinating world. However, students often perceive parasitology as impenetrable. What if a flamboyant flea circus director passionately introduced the multidimensional contexts of this discipline? Will role-play capture the imagination of students and guide them in their future learning?


Asunto(s)
Parasitología , Parasitología/educación , Parasitología/tendencias , Humanos , Enseñanza , Desempeño de Papel , Animales , Estudiantes/psicología
19.
EMBO Mol Med ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862600

RESUMEN

Parasites, such as the malaria parasite P. falciparum, are critically dependent on host nutrients. Interference with nutrient uptake can lead to parasite death and, therefore, serve as a successful treatment strategy. P. falciparum parasites cannot synthesise cholesterol, and instead source this lipid from the host. Here, we tested whether cholesterol uptake pathways could be 'hijacked' for optimal drug delivery to the intracellular parasite. We found that fluorescent cholesterol analogues were delivered from the extracellular environment to the intracellular parasite. We investigated the uptake and inhibitory effects of conjugate compounds, where proven antimalarial drugs (primaquine and artesunate) were attached to steroids that mimic the structure of cholesterol. These conjugated antimalarial drugs improved the inhibitory effects against multiple parasite lifecycle stages, multiple parasite species, and drug-resistant parasites, whilst also lowering the toxicity to human host cells. Steroids with introduced peroxides also displayed antimalarial activity. These results provide a proof-of-concept that cholesterol mimics can be developed as a drug delivery system against apicomplexan parasites with the potential to improve drug efficacy, increase therapeutic index, and defeat drug resistance.

20.
Emerg Top Life Sci ; 7(1): 67-79, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36820809

RESUMEN

Eukaryotic pathogens with an intracellular parasitic lifestyle are shielded from extracellular threats during replication and growth. In addition to many nutrients, parasites scavenge host cell lipids to establish complex membrane structures inside their host cells. To counteract the disturbance of the host cell plasma membrane they have evolved strategies to regulate phospholipid asymmetry. In this review, the function and importance of lipid asymmetry in the interactions of intracellular protozoan parasites with the target and immune cells of the host are highlighted. The malaria parasite Plasmodium infects red blood cells and extensively refurbishes these terminally differentiated cells. Cholesterol depletion and an altered intracellular calcium ion homeostasis can lead to disruption in erythrocyte membrane asymmetry and increased exposure of phosphatidylserine (PS). Binding to the PS receptor on monocytes and macrophages results in phagocytosis and destruction of infected erythrocytes. Leishmania parasites display apoptotic mimicry by actively enhancing PS exposure on their surface to trigger increased infection of macrophages. In extracellular Toxoplasma gondii a P4-type ATPase/CDC50 co-chaperone pair functions as a flippase important for exocytosis of specialised secretory organelles. Identification and functional analysis of parasite lipid-translocating proteins, i.e. flippases, floppases, and scramblases, will be central for the recognition of the molecular mechanisms of parasite/host interactions. Ultimately, a better understanding of parasitic diseases, host immunity, and immune escape by parasites require more research on the dynamics of phospholipid bilayers of parasites and the infected host cell.


Asunto(s)
Parásitos , Toxoplasma , Animales , Interacciones Huésped-Parásitos , Fosfolípidos/metabolismo , Toxoplasma/metabolismo , Eucariontes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA